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Computations of Marangoni convection are usually performed in two- or three-
dimensional domains with rigid boundaries. In two dimensions, allowing the free
surface to deform can result in a solution set with a qualitatively different bifurca-
tion structure. We describe a finite-element technique for calculating bifurcations
that arise due to thermal gradients in a two-dimensional domain with a deformable
free surface. The fluid is assumed to be Newtonian, to conform to the Boussinesq
approximation, and to have a surface tension that varies linearly with temperature.
An orthogonal mapping from the physical domain to a reference domain is emp-
loyed, which is determined as the solution to a pair of elliptic partial differential
equations. The mapping equations and the equilibrium equations for the velocity,
pressure, and temperature fields and their appropriate nonlinear boundary condi-
tions are discretized using the finite-element method and solved simultaneously by
Newton iteration. Contact angles other than 90 degrees are shown to disconnect
the transcritical bifurcations to flows with an even number of cells in the expected
manner. The loss of stability to single cell flows is associated with the breaking
of a reflectional symmetry about the middle of the domain and therefore occurs
at a pitchfork bifurcation point for contact angles both equal to, and less than,
90 degrees. (© 1998 Academic Press

1. INTRODUCTION

We consider a Newtonian fluid in a two-dimensional container as shown in Fig. 1, wi
is heated from below along its lower surfdtg. The container is assumed to have adiaba
sidewallsI", andTI'r, and the upper surface of the fluit: is exposed to the atmosphere
When the free surfacEr is horizontal, a conducting solution exists for which the fre
surface is an isothermal surface. This conducting solution is stable for sufficiently s
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FIG. 1. Sketch of the physical domain.

temperature gradients, but loses stability to a convecting solution if the temperature
the bottom boundary is increased beyond a critical value. Pearson [1] has shown tha
sufficiently thin layers the instability arises due to the temperature-dependent nature
the surface tension, rather than due to buoyancy effects. The instability due to an inve
density stratification dominates for thicker fluid layers.

For contact angles other than 90 degrees, the free surface is no longer an isotherma
face, and non-zero shear stresses exist along the free surface, arising due to the temper
dependent nature of the surface tension. There is no conducting solution that satisfies
the equilibrium and boundary conditions. The effect of non-horizontal free surfaces
the qualitative nature of the bifurcation structure has previously been recognized by D:
[2]. His discussion concerns Marangoni convection in cylindrical geometries. On gene
grounds he argues that convecti@g2)-symmetric flows will arise continuously, but non-
axisymmetric flows must develop at a symmetry-breaking bifurcation point. Analogo
behaviour will be demonstrated for two-dimensional flows.

We investigate the effect of allowing contact angles other than 90 degrees and the atter
loss of a conducting solution. An orthogonal mapping technique described byaThff€3]
(and, for example, by Riskin and Leal [4]) is used to resolve the location of the deforma
free surface. By seeking steady solutions only, we avoid the complex issues surrount
moving contact lines and time-dependent free surfaces. Since we can reasonably expe
free surface to be a (single-valued) function of the horizontal coordinate and we kno
priori where the (steady) free surface is likely to be steepest, we are able to use a relati
simple mapping technique compared to the sophisticated methods described by Tsivel
and Brown [5] and Christadoulou and Scriven [6].
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Nonlinearities are present in both the governing equations which pertain in the inte
of the computational domain, and in the boundary conditions at the free surface. A ji
in pressure exists across the free surface that is proportional to the product of the su
curvature and the (temperature-dependent) surface tension. We solve the full nonl
problem, and make no assumptions regarding the relative sizes of the inertial and diffi
terms in the momentum equation. The contact angle need not be close to 90 degree
need the free surface curvature be small.

By combining extended system methods for locating singular points (for implementa
details see Cliffeet al. [7—9]) with the orthogonal mapping technique, we are able !
investigate the roles of buoyancy, surface tension, and contact angle on the bifurc:
structure of the solution set in a finite domain, when the free surface is required to be ¢
than horizontal. In order to describe the disconnections that occur when the free surfe
no longer constrained to be horizontal, we concentrate on flows for which the free-sur
deformations are small. We do so, not because of any limitations of our method, but bec:
even for small free surface deformations, these disconnections become so large the
difficult to observe the relationships that necessarily exist between the horizontal and
horizontal free surface cases. The large quantitative effect of contact angles other
90 degrees is illustrated in Fig. 6.

An essential component of our study was the use of a computer algebra system, il
case REDUCE [10]. A finite-element analysis of the coupled system of partial differen
equations and boundary conditions governing the flow produces a finite-dimensional sy
of algebraic equations. First- and second-order derivatives of these equations were rec
in order to find regular solutions using Newton’s method and to locate singular poi
which were found as regular solutions of “extended systems” of equations. Derivatives
respect to both the variables and parameters were necessary in order to perform contin
with respect to a chosen parameter. The system of equations includes those desc
the orthogonal mapping, and the variables include the coordinates of the physical dor
Automatic generation of the subroutines to compute derivatives was deemed to be ess:
Quadratic convergence of the Newton iteration was observed in all cases. More sophisti
systems of elliptic equations to determine the mapping would make the use of a comj
algebra system even more important.

Considerable success has already been achieved in computing the onset of Mara
convection in non-deforming domains. Wintetsl.[11], Dijkstra [12], Bergeort al. [13],
and Evrenselamett al.[14] have examined flows in two-dimensional rectangular contai
ers; Zaman and Narayanan [15] have considered the instability in cylindrical containers;
more recently, Dijkstra [16, 17] and Dauby and Lebon [18] have performed computati
in three-dimensional domains. Other authors, amongst them &fadr{19], Floryan and
Chen [20], Lu [21], Sasmal and Hochstein [22], and Chippetda. [23] have performed
computations of flows driven by thermocapillary forces in deformable domains, but tl
have all concentrated on the sidewall, rather than the bottom heated case. To the b
our knowledge the present study is the first application of extended system techniqu
compute codimension-zero singularities (limit points and symmetry-breaking bifurcat
points) of a deforming free surface flow.

Much of the interest in Marangoni convection has arisen in the context of microgra
environments due to the potential for growing high quality crystals in space. Kamot:
et al. [24] show that in low gravity environments, surface deformations can be large
have a considerable affect on the flow. Kamotami and Platt [25] have addressed the sir
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computational problem of flows in curved, but fixed free surfaces. We also concentr
on the zero gravity case, but our technique assumes no surface location a priori, and pe
the free surface to deform as necessary. Note for example, the asymmetry in the heigh
the free surface at the left-hand and right-hand walls in Fig. 12, which was determinec
part of the solution.

2. THE GOVERNING EQUATIONS

We consider the flow of a Newtonian fluid in a two-dimensional don§aimith bound-
ary I' comprised of four part§’ , r, I'g, andT'g, as sketched in Fig. 1. Letting the
superscript: denote dimensional quantities and invoking the Boussinesq approximatic
the continuity, momentum, and temperature equations are

V. -u* =0,
Du* V. .7 ,

P0 Dt x0T rg), 1)
DT*
Dt* ZKVET*’

whereu*(x*) is the velocity vector at positiox* € 2, T*(x*) is the temperature, and

vooid L ?
T xx Jay*’
, 92 32

wherei andj are unit vectors in th&- andy-directions, respectively. The stress tensor
is given by

T = — P o) + u(uij +ujp), (2)
where p*(x*) is the pressuregy is the molecular viscosity, and

ou’

* |

ul’] _ a_X]k.
The fluid densityp (x*) is assumed to vary with temperature as
p(X*) = po[l — a(T*(X*) — To)],

whereTy is the temperature at the free surface of the conducting solutiasithe density at
temperaturdy, andx is the coefficient of thermal expansion. Consistent with the Boussine:
approximation, the temperature-dependent denpsitypears only in the gravitational body
force term, wherg is the acceleration due to gravity. FinaMyis the coefficient of thermal
diffusion.
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Equations (1) must be solved subject to the following boundary conditions,

u*(x) =0 forx* €L, T, Tr,
ut-n=0 forx* e I,
niri’jnj = K*o (X*)
= K*[og — o1 (T*(x*) — Tg)]  for x* € T,

tigin; =t- V,o(x") @)
= —oq[t- V, T*(x")] for x* eT'g,
T'X) =T for x* € g,
n-v,T*x*)=0 forx* eI’ , 'R,
—ko[n - V, T*(x*)] = h(T*(x*) — To) for x* € Tk,

wheren andt are respectively the outward normal and tangent vectors,aand K* is
the curvature of the free surface. The surface tensidm assumed to vary linearly with
temperature as

o(X*) =09 — o1 (T*(X*) — Tp),  forx* e Tg,

whereay is the surface tension at temperatdigeando; is the rate of change of surface
tension with temperature. In the boundary condition for the temperature field at the
surfacekg is the thermal conductivity of the fluid artds the surface thermal conductance

We non-dimensionalize Egs. (1) and boundary conditions (3) by choosing approp!
length, velocity, and temperature scales. The depth of an undeformed fluid layer of €
volume is chosen as the length scélei.e., d =volume/l, wherel is the length of the
domain. The “Marangoni” velocityy = (618d)/u is chosen as the velocity scale, where
B is the average temperature gradient from bottom to top. The appropriate time s
is thend/Vy = u/(018). Temperatures are non-dimensionalized as (T* — Tp)/(8d).
We define seven non-dimensional quantities,

. I
Aspect ratio n= r
hd
Biot number L=—,
ko
d2
Bond number G= P9 ,
00
Capillary numbeyr Ca= 50—';, 4)
d2
Marangoni number M = 1P ,
K
Prandtl number Pr = L,
PokK
4
Rayleigh number R= M,



198 CLIFFE AND TAVENER

so that Egs. (1) become

V.u=0,
M Du V.t RT G .
prot ¢ \m  mc)b (5)
DT 2
M— = V2T,
Dt
where
v_i 0 4 0
% Jay’
02 9 6)
Vie — 4 —
X2 + ay?’
Tj = —P&ij + (Ui j +uji),
andt = t*/(018) andp = p*/(018).
The boundary conditions (3) become
u=20 forx eI',I'g, I'r,
u-n=20 forx e I'g,

1
N 7jj Nj ZK( T) forx e I'g,

i
tigjng =—-t.VT forx € T'g, O
T=2 forx e I'g,
n-vT =0 forx e 'L, g,
n-VT +LT =0 forx e I'g,
whereK = K*d.
Noting that

u-n=20 onTl,

we recognize that one of the (local) element divergence constraints is redundant, and

replaced by a global volume constraint.

3. ORTHOGONAL MAPPING TECHNIQUE

In this section we briefly review the orthogonal mapping technique for solving visco

free-surface flows that has been previously described by @titie[3]. Cliffe et al. used this

approach to compute the free surface location of laminar flows down a shallow inclined pl
and over two sinusoidal bumps. Their results were compared with laboratory measurem
of the free surface heights for a range of Reynolds numbers varying from 0.3 to 25.
all flow rates, the computations and experiments were found to agree to within 2% in

appropriate norm.
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Let Q(x, y) be the physical domain with four sid€s, I'g, I'r, andI'r such as shown
in Fig. 1. We construct an orthogonal mappiig(x, y), ¢ (X, y)) from Q onto a reference
domain®’ where

Q={W, 0 : W ¢ e[-3 3] x01]}, ®)

such that the level curves af(x, y) and ¢ (X, y) are orthogonal, and the boundaries
', Tg, Tr, andl's are mapped ontg = —3, ¢ =0, ¥ = 3, and¢p = 1, respectively. The
system of partial differential equations and boundary conditions governing the flow
the physical domairf2(x, y) is then recast in terms of the new independent variabl
(¢, ¢) € . The partial differential equations and boundary conditions defining the ortl
gonal transformation are added to the equations governing the flow, and the combinec
tem is solved using a conventional finite-element approach. The resulting nonlinear sy
of algebraic equations is solved by Newton’s method.
The coordinate transformation is orthogonal if

V¢ -V =0 forall (x,y) € @,

which has the general solution

Yx = )»(Py,
9)
wy = _)\‘¢Xs
wherei depends ofix, y) (or equivalently(v, ¢)). Using
=37l Uy =37, gx=-37lyy, gy =37y,
where
3= ) =det<x"’ X"’)
(Y, @) Yy Yo
is the Jacobian of the transformation, Eqgs. (9) become
Yo = )\Xw,
(10)
Xp = =AYy

Assumingx(yr, ¢) andy(y, ¢) to have continuous second derivatives, equating cross de
vatives ofy (¢, ¢) andx(y, ¢) respectively from (10), we have

<&> + ()\X]/,)l/, = 0, (11)

rJy

(W’) +yy)y =0, (12)
/g

which, giveni (v, ¢), provide two elliptic partial differential equations f@x, y) on Q.
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The boundary conditions fot(y, ¢) and y(y, ¢) are derived from the shapes of the
fixed boundaries of the physical domdi from the orthogonality condition along the
boundaries of2, from the kinematic boundary condition along the free surfagegand
from the required contact angles. They are

1
X=-n/2, yy =0 onxpz—é,

Xy =0, y=0 on¢ =0,
1
X=1n/2, yp =0 ony =z,
(13)
Ay =y, Uy, +uvx, =0 ong=1

Xy + Yy tand =0 at(y, ¢) = (—%,l),
Xy —yptand =0  at(y,¢) = (3.1),

wherey is the aspect ratio defined in Section 2, @nd the prescribed contact angle.
For simplicity, we shall require thatyr, ¢) be constant iif2’ and achieve this by solving

V2., ¢) = 0, (14)
with boundary conditions
n-va=0 forall(y,¢) el (15)
where
v, =i + a
YV Ja¢’
92 92
P= o,
Y2 9¢2

andn’ is the outward-directed normal on the boundBfy The constant value of is de-
termined by invoking the orthogonality conditions at an interior poirRgfe.g.,

Yo+ X =A%y —Yy)  at(y, ) =(0,3). (16)

The corresponding weak equations are developed in Appendix A.

4. LOCATING SINGULARITIES

4.1. Computation of Z Symmetry-Breaking Points

The weak equations presented in Appendix A were solved via the finite-element metl
using isoparametric quadrilateral elements with biquadratic interpolation of the physi
coordinatex andy, the velocity componentsandv, and the temperatufie Discontinuous
linear interpolation of the pressure field was employed. The resulting nonlinear systen
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equations may be written as
f(a,b) =0, f:RV x RP— RN, (17)

The finite-dimensional system of nonlinear algebraic equations (17) is equivariant \
respect to aiN x N) orthogonal matrixS, such thatS? =1, but S# 1, i.e.,

Sf(a,b) = f(Sa,b). (18)

The orthogonal matrixs induces a unique decomposition @l into symmetric and anti-
symmetric subspaces,

R'Y=R)a@RY,
where

RN ={xe RN:Sa=a},
RN =(xeRV:Sa=—a}.

Symmetric solutions are those for which

XY, ¢) = =X(=¥, $),
YW, ¢) = y(=¥. ¢),
AW, @) = A=V, 9),
u(y, ¢) = —u(=v, ¢),
v, @) = v(=¥, $),
PV, ¢) = p(=¥. ),
TW.¢) =T(=v.9¢).

Anti-symmetric solutions are those for which

X(Y, ) = X(=¥, ),

YW, 9) = =y(=¥. ),
AW, @) = =A(=V. ),
U, ¢) =u(=v, ),

v, @) = —v(=¥, ),
P, ¢) = —p(=¥. ),
TW,¢) =-T(=¢. ).

At a symmetry breaking bifurcation poirdy, bp),

of

— z=0,
92 a9,

whereap € R) and the null eigenvectoze RY.
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Since the symmetries of the solution and eigenvector are known, all computations r
be performed in one-half of the domain. The boundary conditions appropri@te where

Q ={W.¢): (. ¢) € [-3,0] x[0,1]}
are
X,=0, y=0 u=v=0 T=2 forye[-310],¢=0

1
X=-n/2, Yy =0, u=v=0, T, =0 forxp=—§,¢e[0,1],

Xy +yytand =0  at(y, ) = (-3, 1),

¥=0
/ -y, dy =0 forgp = 1,
v

=—1/2

—uyy, +vx, =0 forye[-3.0], ¢=1,

dy =0 forgp =1,

¥=0 1 1
I e e
v=-1/2 X5 + Y3

dy =0 forgp =1, (19)

=0 1 1
I e
y=-1/2 X5 + Y5
¥=0
LT\/x2 +y2dy =0  forg =1.
A VA& T Yy

=-1/2

Odd symmetry boundary conditions &rfor ¢ = 0, ¢ € [0, 1].
Even symmetry boundary conditions grior v = 0, ¢ € (0, 1).
Even symmetry boundary conditions rfor = 0, ¢ € [0, 3) U (3, 1],
andyy + Xy = A(Xy — Yy) at(y, ¢) = (0, 3).
Odd symmetry boundary conditions arfor ¢ = 0, ¢ € (0, 1].
Even symmetry boundary conditions onT for ¢ = 0, ¢ € (0, 1].

When computing a symmetric solution &1 , a global volume condition is required.
Non-slip velocity boundary conditions are imposed alprg0 andyy = — % the kinematic
condition is applied along the free surfage- 1, andu = 0 along the symmetry axig =0
by symmetry. In other words

u-n=20 onT,

and one of the (local) element divergence constraints is redundant. We replace one o
element divergence constraints by a global volume constraint. When computing the
eigenvector on one-half of the domain, theelocity component of the eigenvectoris
not required to vanish by symmetry alogig= 0. All element divergence constraints are
required and we remove the global constraint and retain all the pressure equations v
computing the null eigenvector.

The components of the null eigenvectoare required to be zero everywhere. In ordet
to ensure this we replace the orthogonality conditiori.at (O, %) used when computing
the solution with a condition that = 0 at (0, %) when computing the eigenvector.
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At a singular point, the kinematic condition requires that

ay ax 9y . 0X
—U—+v——-U—+v— =
oy oy Y Y

along the free surface, wheteand v are the two velocity components of the solutior
and 0 and v denote the two velocity components of the null eigenvector. Equation (2
is used to determine thge-component of the null eigenvect§rat each node along the
free surface. For all symmetric solutions, regardless of the value of the contact angle
velocity componentsl andv are zero at the centre of the free surface. Both O and
% = 0 by symmetry. The latter condition requires that the free surface has zero slope ¢
centerline and therefore= 0 at the centerline. Along the symmetry axis, Eq. (20) reduc
tod =0, sincea% # 0 alongyr = 0. For symmetric solutions, thecomponent of velocity
is symmetric abouty =0, so thev-component of a symmetry-breaking eigenvector mu:
be antisymmetric about =0, and therefore must be zero along the symmetry axis. Wk
see that the kinematic condition used to deterniiret the middle of the free surface is
identical to the condition on Which is imposed by symmetry. A naive implementation wil
have two linearly dependent equations. A non-singular system of equations is obtaine
replacing (20) aty = 0 with § =0, since they-component of the eigenvector must be zer
alongy =0 by reason of it being antisymmetric abaut=0.

With these extra conditions, the Werner—Spence extended system [26] can be us
usual.

0, (20)

4.2. Computation of Limit Points

When computing limit points along branches of symmetric solutions, at which the r
eigenvector is symmetric, the problems described in the previous section do not &
since there is no symmetry requirement foto"be zero along the centerline. Indeed ir
the interior of the flow, the-component of the eigenvector is non-zero algng 0 and is
required to be zero at the free surface due to the kinematic boundary condition only.
symmetric solutions, the free surface must be horizontal at the centerline-ar@along
the centerline.) When computing @i , we retain the global constraint when computing
the eigenvector, since for symmetric eigenvectors

d-n=0 onT.

We again force\ to be zero a{0, %). With this provision, the Moore—Spence extende
system [27] may then be used directly.

5. RESULTS

Our particularimplementation of the orthogonal mapping technique has been succes:
tested against laboratory measurements of the free-surface flow down an inclined plan
over two sinusoidal bumps for a range of flow rates as reported in €lifé [3].

An additional test problem was investigated in order to determine convergence behav
In the absence of gravity and temperature gradients, there is no fluid motion in a 1
dimensional domain like that shown in Fig. 1, and the free surface has constant curv:
and is an arc of a circle whose radius is dependent upon the contact angle. This is one
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few exact solutions of the Navier—Stokes equations with a non-horizontal free surface
unfortunately a very simple one. However, since the arc of a circle cannot be represente
actly using piecewise quadratic interpolation of the mapping functi¢is¢) andy (v, ¢),

we can use this exact solution to study the rate of convergence of our method. Due tc
normal stress boundary condition, the location of the free surface depends on the curve
of the surface and thereby on second derivativeg®f ¢) andy(y, ¢). These variables are
interpolated by piecewise quadratic functions on quadrilateral elements. Girault and Ray
[28, p. 158] show that thglobal convergence of the interpolant is cubic in thesemi-norm
and quadratic in théd! semi-norm. Their result cannot be extended tokffesemi-norm
since this is undefined (even weakly) for the interpolant. We consider instead the interp
tion on an element-by-element basis. Brenner and Scott [29, p. 104] show that on each
ment the local interpolant converges linearlyiim the H? semi-norm. By summing over all
elements [29, p. 107] they then obtain an appropriate equivalent global estimate. The lii
convergence of the free surface location observed in Table 1 reflects the linear converg
of the interpolant in thé42 semi-norm. The pressure field converges linearly to a consta
pressure field that is equal to the product of the surface tension and surface curvature. ¢
we would expect a piecewise linear interpolant to represent a constant field exactly on
mesh, the observed linear convergence of the pressure field is a further consequen
the linear convergence of the free surface. If, by contrast, the nodes along the free sui
areconstrainedo lie on the arc of a circle, and the normal and tangential stress bound:
conditions along the curved surface are used to solve for the two velocity compone
the solution to the discrete equations reproduces the exact (constant) pressure field ol
mesh.

As a third test, we considered the onset of convection in the absence of gravity wit
90-degree contact angle. In Table 2 we show the effect of decreasing capillary numbe
the location of three different critical points. The first critical Marangoni nunieg;
indicates the loss of stability of the conducting solution at a symmetry-breaking bifurcati
to a single-cell flow at an aspect ratio of one. The second critical Marangoni niviagker
indicates the loss of stability of the conducting solution at a transcritical bifurcation po
to a two-cell flow at an aspect ratio of two. The Marangoni numbers in the final colum
Ma, ,, are those at the limit point associated with the transcritical bifurcation to two-ce
flows at an aspect ratio of two. For this test, the other parameters were Rayleigh nun
zero, Bond number zero, Biot number one, and Prandtl number one. The correspon
critical Marangoni numbers computed by Wintetsal. [11] on equivalent meshes with
a horizontal, non-deforming upper surface, complete the table. As expected, the crit

TABLE 1
Convergence Study in the Absence of Gravity and Temperature Gradients

Mesh L, velocity error L, pressure error L, surface error
2x2 0.1833E-00 0.2107EB-00 0.8037E-02
4x4 0.1242E-01 0.2186E-01 0.5173E-03
8x8 0.2547E-02 0.4839E-01 0.7405E-03
16x 16 0.2757E-03 0.3495E-01 0.3543E-03
32x 32 0.2806E-04 0.2267E-01 0.1567E-03

64 x 64 0.2883E-05 0.1451E-01 0.6881E-04
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TABLE 2
Comparison of Critical Marangoni Numbers for
Deforming and Rigid Upper Surfaces

Ca Mag, Mar, May;
5.0E-03 140.18 137.23 137.20
4.0E-03 159.38 147.58 147.48
3.0E-03 178.42 154.96 154.80
2.0E-03 193.98 159.83 159.63
1.0E-03 205.03 163.07 162.85
1.0E-04 211.61 165.11 164.88
1.0E-05 212.14 165.29 165.06
rigid[11] 212.27 165.307 165.119

Marangoni numbers approach those on an undeforming domain as the surface tefgion
i.e.,o0, increases. The two bifurcation points reported in [11] lie on the convecting solut
branch for which the velocity field is identically zero and the temperature field is linear w
isotherms that are parallel to the free surface.

Contact angles other than 90 degrees produce a qualitative change in the nature
solution set. When the contact angle is 90 degrees, a conducting solution exists for w
the free surface is an isothermal surface. If the free surface is forced to be concave or c
because the contact angle is greater than or less than 90 degrees, the free surface ca
an isothermal surface and unbalanced surface tension forces must act along it. These
lanced forces necessarily drive a flow whose strength depends upon the Marangoni nu
As a result of the loss of a conducting or “trivial” solution, the transcritical bifurcation
two-cell flows is disconnected.

If the free surface is concave, the primary branch, i.e., the solution branch that is
tinuously connected to the unique solution at small Marangoni number, is a two-cell f
with upwelling along the centreline. Two-cell flows with down-welling along the centrelir
occur as disconnected solutions. It is reasonable that two-cell flows with upwelling al
the centreline should be preferred, since the concave free surface is hotter at its m
(which is nearer the hot bottom surface) than at its sides. Unbalanced surface tension f
are therefore directed from the centre towards the wall.

The loss of stability to single-cell flows is associated with the breaking atilsgmmetry
about the vertical midplane. Provided the contact angles at the left-hand and right-hand
are equal, solutions along the primary solution branch respect this symmetry, and single
flows still arise at a pitchfork bifurcation point.

All the computations discussed below were performed with Rayleigh number zero, B
number zero, Biot number one, and Prandtl number one. Loci of singular points for a cor
angle of 89.4 degrees and capillary number of’ldre shown in Fig. 2. A contact angle neal

FIG. 2. Loci of singular points for® = 89.43 degrees anda=10"°. The solid curveACB is a locus of
symmetry-breaking bifurcation points on the primary two-cell branch, and the chainddiQinis a locus of limit
points on the one-cell branches. The solid cuPg is a locus of limit points on the disconnected two-cell branch
and the dashed linEG, is a locus of symmetry-breaking bifurcation points on this branch. The narrow dast
lines are paths of bifurcation points fér= 90 degrees anda = 10°°. (a) Detail near quartic poir®. (b) Detail
near double singular poitd.
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90 degrees and a small capillary number were chosen so as to highlight the connec
with the known results for a rigid horizontal free surface, not because of any inhel
limitations in our method. The solid curnCBis a path of symmetry-breaking bifurcation
points on the primary solution branch. The primary branch is the branch of solutions th
continuously connected to the unique solution at small Marangoni numbers. Solutions a
the primary branch are two-cell flows with upwelling along the centreline. The ot
C+ coalescence point (see [9]) from which a closed loop of one-cell flows develops.
chained lineHQ, is a path of limit points along the one-cell flow branches. It terminat
at a quartic bifurcation poinQ, where the bifurcation to single cell flows has locally
quartic contact. The quartic poir® indicates the aspect ratio at which the symmetry
breaking bifurcation at the larger Marangoni number along the primary branch char
from supercritical to subcritical. For aspect ratios less than that at the quartic bifurca
point, the one-cell flows will demonstrate hysteresis.

The other solid curv®E in Fig. 2 is the locus of limit points along the disconnecte
two-cell branch. Two-cell flows with down-welling along the centreline exist for Marangc
numbers exceeding that alobg. These two-cell flows are, however, unstable with respe
to anti-symmetric disturbances until the Marangoni number exceeds that along a loci
secondary bifurcation points, a part of which is indicated by the dashe&@ne

The thin dashed lines in Fig. 2 represent loci of singularities for the case with 90 de
contact angles and capillary number of-0The critical Marangoni numbers for the
bifurcations to one- and two-cell flows are shown, as are the critical Marangoni numbe
turning points along the one-cell solution branches and at secondary (symmetry-brea
bifurcation points along the two-cell solution branches.

Details near the quartic poi@ and a double singular poit are shown in Figs. 2a and
2b, respectively. The apparent self intersection of the path of symmetry-breaking bifurce
points in Fig. 2b is avoided as these bifurcations lie on two different solution surfac
Secondary bifurcation points that lie on the disconnected branch of two-cell solutions (\
downwelling along the centreline) are indicatedHbySecondary bifurcation points that lie
on the solution branch corresponding to the conducting solution for horizontal free surfa
are indicated by. The pointM is a double singular point, where the turning point alon
the disconnected branch of two-cell flows and a symmetry-breaking bifurcation point
coincident. AC+ coalescence poiril, and aC— coalescence poir®, are also present in
this figure.

In Figs. 3, 4, and 5 we plot the computed bifurcation diagrams at aspect ratios 1.6,
and 2.0, respectively. The measure chosen to characterize the solutions is the sum of th
izontal and vertical velocities along the centrelinévat¢) = (0, 1/4). The thin horizontal
dotted lines ara(0, 1/4)+v(0, 1/4) = 0. Noting thau(0, 1/4) = 0 for the symmetric even-
cell flows, these figures clearly show that the primary two-cell flows have upwelling alc
the centreline, while the disconnected two-cell flows have down-welling along the cer
line. The symmetry-breaking bifurcation at the larger Marangoni number along the prirr
branch is supercritical in Fig. 3 since the aspect ratio 1.6 is less than that at the quartic
cation point,Q, Fig. 2a. The corresponding bifurcation pointin Fig. 4 is subcritical since t
aspectratio 1.7 is greater than that at the quartic bifurcation point. Figures 3 and 4 both
branches of one-cell flows arising at symmetry-breaking bifurcation points terminating
the branch of two-cell flows with upwelling at the centre. This is consistent with the findir
of Dijkstra [12] for horizontal free surfaces. Dijkstra argues that although initially purely
tisymmetric, nonlinear effects cause clockwise rotating single-cell flows to become cer
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FIG. 3. Bifurcation diagram fom = 1.6, 9 = 89.43 degrees, anda = 10-°. The ordinate isi(0, 1/4) +
v(0, 1/4).

nearer to the right hand wall, allowing a small anticlockwise rotating eddy to develop in't
top left-hand corner. This eddy grows with Marangoni number and eventually a symme
two-cell flow with upwelling at the centre arises. The same argument suitably modified
plies to anticlockwise rotating cells. The two-cell flow arises either continuously (see [1
Fig. 4a) or via a hysteretic jump (see [12], Fig. 12b) according to whether the aspect rati
greater than or less than that at the quartic point for 90 degree contact angles shown in Fi
The loop of one-cell flows collapses at t@e- coalescence poin® shown in Fig. 2,
and for a range of aspect ratios exceeding that at this coalescence point, the bifurce
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- 0.002f

0
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;—-0.002p

u(0
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-0.008}

—0.01 N L A )
01 00 150 200 250 300

Marangoni number

FIG. 4. Bifurcation diagram fom = 1.7, = 89.43 degrees, anda=10"°. The ordinate isi(0, 1/4) +
v(0, 1/4).
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FIG. 5. Bifurcation diagram fom = 2.0, = 89.43 degrees, anda = 10°°. The ordinate isi(0, 1/4) +
v(0, 1/4).

diagrams are as shown in Fig. 5. As the contact angle decreases, the coalescence
moves rapidly towards smaller values of the aspect ratio and larger values of the Marar
number, greatly reducing the region of parameter space in which one-cell flows can o
In Fig. 6 we plot the critical Marangoni numbers for bifurcation to 1-cell and 2-cell flov
for contact angles of 90 degrees, and the branch of symmetry-breaking bifurcation p

280.0 v T T
=—e== 90 degrees: 1-cell
=== 90 degrees: 2-cell
260.0 =——=a 89.43 degrees ]
o— 84.27 degrees
240.0 E
ju- <
3
£ 2200 .
>
c
= i
S 200.0
o)}
c
§ 180.0 ;
\\
160.0 Sso T
-~
—”->g
140.0 | ST~y o J
120.0 'l Il 1 L [l
1.0 1.2 1.4 1.6 1.8 20 22

Aspeét ratio

FIG. 6. Lociof singular points foca= 107°. The chained line is the locus of symmetry-breaking bifurcatio
points for a horizontal free surface. The dashed line is the locus of transcritical bifurcation points for a horizc
free surface. The two solid lines show the loci of symmetry-breaking bifurcation points on the primary two-
branch ford = 89.43 degrees (squares) and 84.27 degrees (circles).



210 CLIFFE AND TAVENER

on the primary two-cell branch for contact angles of 89.43 and 84.27 degrees. It is cl
that even contact angles close to 90 degrees disconnect the bifurcation structure by a
amount and comparisons between the horizontal rigid and deformable free-surface ¢
can only be sensibly made for contact angles near 90 degrees.

The symmetry breaking and symmetry preserving properties of the different types
singularities are evident from the null eigenvectors shown in Figs. 7a—e and 8a—e. The
eigenvector at the symmetry-breaking bifurcation point for aspect ratio 1.7 and Marang
number 143 is shown in Fig. 7, and is clearly antisymmetric. The null eigenvector at |
limit point of the disconnected two-cell flows at aspect ratio 1.7 and Marangoni numt
221 is shown in Fig. 8, and is clearly symmetric. The null eigenvectors are scaled so
thev-component of the eigenvector@t, ¢) = (—1/4, 1/4) is equal to 1 in Fig. 7 and the
v-component of the eigenvector@t, ¢) = (0, 1/8) is equal to 1 in Fig. 8.

The results of a convergence study for three of the more interesting singularities at cor
angle of 89.4 degrees and capillary number of’ldre presented in Table 3. We have chose!
to examine the convergence at the symmetry-breaking bifurcation point on the primary f
at the larger Marangoni numbktag,, and the limit point on the branch of one-cell flows at
an aspect ratio of 1.84a, ». The limit point along the branch of disconnected two-cell flows
at an aspect ratio of 1.¥a_ 1, is also investigated. (Note that the symmetry-breaking bifur
cation points were computed &1 using only one-half the number of elements indicated.

In all three columns of Table 3, the critical Marangoni number appears to be converg
with h at a rate that is faster than the linear rate expected on the basis of our test p
lems. However, the minimum free surface height (which occugs-at0) at the symmetry-
breaking bifurcation pointMag,, converges at a rate that is more obviously linear, as i
shown in Table 4.

Figures 9, 10, and 11 show the streamfunction and isotherms for the stable solutior
aspect ratio 1.7 and Marangoni numbers 100, 190, and 250, respectively.

The details of the mechanism by which one-cell and two-cell flows exchange stability
the aspectratio increases when the free surface is constrained to be flat have been repor
Dijkstra [12]. An entirely analogous sequence of bifurcation diagrams arises when the
surface is deformed, differing only due to the disconnection of the transcritical bifurcatio
When such comparisons are drawn, the disappearance of one-cell flows at the coalest
pointC is not surprising, as it can be seen to correspond to the disappearance of the one
branches at the multiple bifurcation point when the free surface is horizontal and rigid
further path of limit points and a path of Hopf bifurcation points have been omitted fro
Fig. 2b as a detailed comparison of the two exchange scenarios will appear later.

An interesting analytical result has been reported by Anderson and Davis [30]. Th
authors seek separable solutions to the coupled thermal and convection problem in w
geometries with an insulating wall and an insulating free surface. For a contact ar
6 =90 degrees, they find a separable solution which satisfies all but the normal sti
boundary conditions, in which the temperature field has a logarithmic singularity at 1
corner. Their solution is valid in a neighbourhood of radiug d/Ma of the contact point
between the insulated sidewall and the free surface. For contact ahglé8 degrees,
they present separable solutions, which again satisfy all but the normal stress boun
condition, in which the temperature and velocity fields are smooth and bounded. We h
not observed any evidence of logarithmic behaviour in the temperature field for cont
angles of 90 degrees. Anderson and Davis do not claim to have fourmhihpossible
solution and further note that, “This example shows that single-phase models with separ
solutions forms may be too idealized in certain areas.”
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FIG. 7. Symmetry-breaking null eigenvector fpr= 1.7, Ma=14311,0 = 89.43 degrees, anGa= 10"5.
Dashed lines correspond to negative values and solid lines to positive values. All contours are equally spac
x-component: contour values 0.04d.25 x 1072; (b) y-component: contour valuesl.8 x 102to 1.8 x 1072,

(c) u-component: contour values3.5 to 16.5; (dy-component: contour values3.15 to 3.15; (e) -component:
contour values-45.0 to 45.0. The eigenvector is scaled so thavtcemponent aty, ¢) = (—1/4, 1/4) is equal
to 1.
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FIG. 7—Continued

In Table 5 we list the critical Marangoni numbers at limit points on two different convec
ing solution branches as a function of the contact afiglEhe limit point atMa,_ ; occurs
on the disconnected branch of two-cell flows at aspect ratio 1.6, and the limitNaint
occurs on the single-cell flow branches an aspect ratio of 1.4. Both were computed f
capillary number of 16°. For contact angles < 90 degrees, solutions with non-singular
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FIG. 7—Continued

temperature and velocity fields are presented by Anderson and Davis. As the contact .
increases, both critical Marangoni numbers converge smoothly to the value that is comy
for a 90 degree contact angle. From the evidence presented in Table 5, it seems reason
suppose that we can accurately compute bifurcations from convecting flows even at co
angles of 90 degrees.

Our technique can of course be applied to flows with much larger free surface de
mations as is indicated by the solutions shown in Figs. 12 and 13. Figure 12 illustrat
one-cell flow at an aspect ratio of 1.2 and a Marangoni number of 200, with a contact a
of 75.5 degrees and a capillary number 6f2x 10-3. Keeping all other parameters fixed,
single cell flows do not exist for much smaller contact angles than shown here.

Figure 13 illustrates a two-cell flow at an aspect ratio of 1.7 and a Marangoni numbe
250, with a contact angle of 77.5 degrees and a capillary numbe75&210-3. It is clear
that much larger free surface deformations are possible for two-cell flows.

The temperature field for the conducting solution that exists for a 90 degree contact
is linear with the isotherms parallel to the free surface, and is clearly regular at the cor
point. This is not a contradiction of Anderson and Davis’ result, since they found a sing
temperature field at a contact angle of 90 degrees to be necessary only for their parti
separable, convectingolutions. In Fig. 14 we plot the critical Marangoni number at th
first symmetry-breaking bifurcation point against contact angle for an aspect ratio of «
We again observe very smooth behviour with respect to the contact angle. The limiting
at a contact angle of 90 degrees is the critical Marangoni number at the first symm:e
breaking bifurcation from the conducting solution. Moffatt [31] presents solutions for t
externally driven isothermal flow near a sharp corner, in which one side of the wedge
wall along which non-slip boundary conditions are applied and the other is a free surf
He shows that for contact angles less than approximately 78 degrees the solution is a
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b

FIG.8. Symmetry-preserving null eigenvector fpe= 1.7, Ma=22071,0 = 89.43 degrees, anda= 10"5.
Dashed lines correspond to negative values and solid lines to positive values. All contours are equally sp:
(a) x-component: contour values9.0 x 10-% to 9.0 x 10°%; (b) y-component: contour values1.6875x 1072
to 1.6875x 1072; (c) u-component: contour values45.0 to 45.0; (dy-component: contour values12.25 to
19.25; (e)T-component: contour values124.875 to 124.875. The eigenvector is scaled so that-tamponent

at (v, ¢) =(0,1/8) is equal to 1.
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FIG. 8—Continued

of rapidly decaying eddies. We have not observed such eddies, and given their very |
rate of decay, an extremely sensitive calculation would be required in order to observe t
We plan to conduct a more detailed investigation of corner flows with boundary conditi
more closely approximating those of Anderson and Davis and Moffatt.

The power of extended system techniques to investigate a multi-dimensional parar
space is further illustrated in Fig. 15. We plot the critical Marangoni number at the f
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______

FIG. 8—Continued

symmetry-breaking bifurcation point at an aspect ratio of one, as the capillary numbe
varied between 0.1 and 18

6. CONCLUSIONS

We have developed a method for computing bifurcations of free-surface flows by cc
bining an orthogonal mapping technique with an extended system approach for loca
singularities. The mapping from the physical domain to a reference domain is compute
the solution to two coupled elliptic partial differential equations. First- and higher ord
derivatives of the discretized mapping equations, equilibrium equations, and nonlin
boundary conditions are required in order to construct and solve the extended syst
by Newton’s method. A computer algebra system, in our case REDUCE, was founc
be essential to construct the subroutines to evaluate such derivatives. In two-dimensi
domains, we have shown that contact angles other than 90 degrees produce the exp
qualitative change (disconnection) in the bifurcations leading to Marangoni convecti
Preliminary investigations have illustrated the power of our method to explore the mu
dimensional parameter space.

TABLE 3
Grid Refinement Study for the Location of Critical Points

Mesh Ma, ; Mag; Ma,,
16x 16 220.712 238.069 239.282
32x 32 220.661 238.033 239.244

64 x 64 220.656 238.031 239.242
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TABLE 4
Grid Refinement Study for the Minimum
Free Surface Height at a Critical Point

Mesh Minimum free surface height
16x 16 0.998653661
32x 32 0.998653447
64 x 64 0.998653392

APPENDIX A: WEAK FORMULATION

The governing equations and boundary conditions can now be written in weak forr
the usual manner. We make extensive use of Green’s second identity

/Qg[V-F]dA:/rg[n-F]ds—/Q[Vg-F]dA

and transform integrals over the physical dom@ito integrals over the reference domair
Q' where necessary.

b

FIG. 9. Solution forn = 1.7, Ma=100, 6 = 89.43 degrees, anGa=1075. (a) Streamfunction: contours
are equally spaced betweeb.4 x 1075 and 54 x 10-°. Dashed lines correspond to negative values (clockwis
rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are equally sp
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b

FIG. 10. Solution forn = 1.7, Ma=190,6 = 89.43 degrees, anGa=10-°. (a) Streamfunction: contours
are equally spaced betweei3.4 x 10-% and—2.0 x 107*. Dashed lines correspond to negative values (clockwise
rotation). The solid line corresponds t®% 10~° (anticlockwise rotation). (b) Temperature: isotherms are equally

spaced.

Let&*(y, ¢) be a suitable test function. Then from (11) the weak equatior(ér ¢) is

[ &[0x0s + (07%), ] dv 0o,

Rewriting this in divergence form

X )‘Xlﬁ
//E [V/. <A_1X¢>‘| dy do
X ’ )LX‘[’ 51)0( )‘X'/f
= . ds— . dy d
Felr (oo L1(E) () oves

= _/¢_1 Yy X dyr —/Q, [OXxES + (A% Ex] dyy dgp

=0,

(21)

since test functions fox(y, ¢) must be zero oy = —1/2 andyr = 1/2 where Dirichlet

boundary conditions are imposeg,=0 on¢ =0 andA~!x, = —y, on¢ =1.
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A
b

FIG. 11. Solution fory = 1.7, Ma=250,0 = 89.43 degrees, an@a= 10"°. (a) Streamfunction: contours
are equally spaced betweer2.7 x 10-% and 27 x 1073, Dashed lines correspond to negative values (clockwis
rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are equally sp

Similarly given a suitable test functiay¥ (v, ¢), then from (12) the weak equation for
Yy, @) is

/Qléy |Gy + (172y,), | dw dg
i AYy

= [ &|v- dy d

oo (2 )] v

— y [ ’ )»yljf ds— %_IZ ] )\y]/, dv d
o _n (Alyqs > /Q &) \ 2V Ve

= [ eaw — [ ool + Govgel dvas
¢=1 &

— 0, (22)

since test functions foy (v, ¢) must be zero opp = 0 where a Dirichlet boundary condition
isimposed angy, =0 ony = —1/2 andy = 1/2. The orthogonality condition along= 1



TABLE 5
Critical Marangoni Numbers vs Contact Angle
at Two Limit Points

Contact angle (radians) Ma, 1 Ma, »
/2—0.0100 239.24 340.44
/2 —0.0050 242.17 346.54
/2 —0.0010 244.67 351.72
/2—0.0001 245.25 352.92

/2 245.32 353.06

——
—

I

b

FIG.12. Solutionforp=1.2,Ma=200,0 =75.5degrees, anda=2.75x 102. (a) Streamfunction: contours
are—3.0 x 10, —2.0 x 104, —1.0 x 10, then equally spaced betwee® 4 10~* and 315 x 10-3. Dashed
lines correspond to negative values (clockwise rotation) and solid lines to positive values (anticlockwise rotati
(b) Temperature: isotherms are equally spaced.
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A

A
b

FIG. 13. Solution forp =1.7, Ma= 250, = 77.5 degrees, an@a=2.75 x 103, (a) Streamfunction: con-
tours are equally spaced betwee#.5 x 10-2 and 45 x 10-2. Dashed lines correspond to negative values (clock
wise rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are eq
spaced.

is imposed via thex-equation. We use the discretized kinematic boundary to solve for
y-degree of freedom at a node along the free surface.
The weak equation fox (v, ¢) is

/s*[v,-v,x]dl//dqs:/ &[n/~V/)»]dS—/[V,SA-V,A]dx[qub
, - o

== /Q (& + 2oy dyr do
=0, (23)

wheret* (v, ¢) is a suitable test function.
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FIG. 14. Critical Marangoni humber at the first symmetry breaking bifurcation point vs contact angle f

n =1andCa=10".

The weak form of

the momentum equations is

M Du G RT
w |22y, = ) =
/Qé [Pr Dt T <|v|c M)J] dxdy=0,

where

Marangoni number

v = <§”(X(1ﬁ, ?). YW, ) )
(XY, ¢). YV, 9))

©-©

0.02 0.04 0.06 0.08 0.1
Capillary number

FIG. 15. Critical Marangoni number at the first symmetry breaking bifurcation point vs capillary number fc

n =1 andd = 90 degrees.
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is a suitable vector test function for the velocity

(U(X(lﬁ, ®), Yy, 615)))
v(X(Y, 9), YW, 8)) )

Derivatives with respect ta andy must be transformed to derivatives with respect to tf
independent variableg and¢, and the integral, which is initially taken over the physica
domaing2, must be transformed to an integral og&t

The inertial terms are

u| M /au ou au
/Qé I:ﬁ(ﬁ‘i‘ &-i- a—y)]dxdy
WM [du
= /Qé {Pr( +u(u,,,1px+u¢¢x)+v(u¢wy+u¢¢y)>}dxdy

M /au
= / gY {Pr( +U(Uy Yy — u¢y¢)J — v(UyXg — u¢xv,)J1)] dx dy
Q

M| . du
= / Pr {J ar T UUyYp — UpYy) —v(Uy Xy — UMM}E dy dg, (24)
o

and
M [ ov v ov
|: — + U(v¢y¢ — U¢y1/,) — v(v,/,xd, — U¢X¢,) E dw d¢ (25)

Applying Gauss’s theorem

/Fj,jdAZ/ande,
Q r

the term involving the divergence of the stress tensor becomes
_/Eiw‘fij,jdXdyz—/ginijnde‘i‘/Ei]f)jfij dxdy
Q r Q
_/éiwfijnjds—i-/filf}j[—p&j —i—(ui,,— +uj,i)]dxdy. (26)
r Q
The pressure terms in (26) are
/p = dxdy= - /p[(swﬁs;«bx)+(s;wy+s;¢yﬂd><dy

= —/Q/ PL(EYs — E0Y) — (5)% —&3xy)] dy de.  (27)
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The first of the pair of velocity terms in (26) is

/ Ui,jgil,vj dxdy
Q

Q

= /Q [(prl/fx + U¢¢x)(§$wx + i"g(ﬁx) + (Uy Yy + Updy) (Slzllfy + §$¢y)
+ Uy Vx4 vp0x) (£ Ux + E4x) + (vy Wy + vy (E) Yy + §¢by) | dx dy
= /Q [y (W + U2)E] + Up (U + YrydyE) + Uy (Yxhx + Yydy)Ey

+Ug (0 + 07) &5 + vy (VE + V)& + vp (U + Yrydy)E,
+ v (Yxbx + Uydy)E) + vy (0F + 67)&,] dx dy

= /Q [AUyES + ATMUgEy + Aoy E) + A g€y ] dyr dep, (28)
since
(1//x¢x + I/fyﬁby) = V¢ . v‘/f
= 0,
YL+ ] = My — Mpydx

= MI72(YpXy — XYy )]

=xJ"Y
and

OF + ¢F = =AMy + Ay Yx
= =232 (Y X — Xy Yp)]
=131

The second pair of velocity terms in (26) is
/ Uj,igiivj dx dy
Q
Q
- / (U Y+ Uph) (EL s+ E580) + (v + o) (EX0y + £ )
Q

+ (Uy Yy + Ugopy) (EJWX + §$¢x) + (vy Yy + vydy) (élzl[’y + $(Z¢y)] dxdy. (29)

The coefficients of the test function derivatives are computed using REDUCE.
Along the free surface

1
Tijj N; ZK(W—T)H—('['VT)I,
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hence the boundary integral in (26) is

_/FF £ {K(MC—T)nl —(t~VT)t|} ds,

since the velocity test function is zero alofig, I'r, andl'g where Dirichlet conditions are
imposed. Using

_dt| i 1 Xy 2 2

alongl'g, integrating by parts, and using the fact that the velocity test functions are zer
the left-hand and right-hand (LH and RH) ends of the free surface, we have

o Gie ) s
[Tl L e (e 7)) -
=Ll

dy. (30)

1 ) 1
| (= T) ot + v
9=t \MC VY
(Notice that the second term from the differentiat';énf;'i (MC T)) cancels the terrf th.

leading to the puzzling simplification.)
Finally, the weak form of the energy equation is

DT
/ T (M— — VZT) dx dy=0,
o Dt

whereg T (x(y, ¢), Y(r, ¢)) is a suitable test function. The convection term is

gT(ME)dxdy
/E M<8T+u VT)dxdy
8T aT
M( P —+va—y)dxdy

oT
— + U(Ty iy + Tapy) + v(Ty iy + T¢¢y)] dxdy

N
M
3

oT
{E FU(TyYs — Toyy) I ™+ v(Tyxs — T¢Xv/)J_l} dxdy

=/Q
-,
=/Q,

™
aT
M {J P +U(Ty Y — TpYy) +v(Ty Xy — T¢Xlﬁ):|§ dy dé. (31)
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The diffusive term is

—/gT(v-VT)dxdyz—/gT[n-VT]ds+/[ng -VTldxdy  (32)
Q r Q

The integral oveg2 in (32) is

T T
Q

aX 09X ay ay

= /Q [Ty + Tod) (5] U + £ ) + (Tythy + Tydy) (€] ¥y + &4 by) ] dx dy

= /Q [(Ty ¥ + Tod) ¥ + (Tyty + Ty Yy l&]

+ Ty ¥x + Tpd)dx + (Ty vy + Tody)dyl; dxdy
- /Q [Ty (2 + ¥2) + Tyt + dyviy)] ]

+ [Ty (e + Yydy) + Ty (07 + 62) €, dxdy

= /Q [0TE) + 0T TpE ] dy dg. (33)

The boundary integral in (32) is zero alofig andI'gr wheren - VT =0 and alongl'g
where the temperature is imposed as a Dirichlet condition, hence the integral reduces

— | £"(n-VT)ds= £T(LT)ds
e e
_ 2 2 T
— /¢=1 (LTw/xl,,+y¢)f;' dy. (34)
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