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Computations of Marangoni convection are usually performed in two- or three-
dimensional domains with rigid boundaries. In two dimensions, allowing the free
surface to deform can result in a solution set with a qualitatively different bifurca-
tion structure. We describe a finite-element technique for calculating bifurcations
that arise due to thermal gradients in a two-dimensional domain with a deformable
free surface. The fluid is assumed to be Newtonian, to conform to the Boussinesq
approximation, and to have a surface tension that varies linearly with temperature.
An orthogonal mapping from the physical domain to a reference domain is emp-
loyed, which is determined as the solution to a pair of elliptic partial differential
equations. The mapping equations and the equilibrium equations for the velocity,
pressure, and temperature fields and their appropriate nonlinear boundary condi-
tions are discretized using the finite-element method and solved simultaneously by
Newton iteration. Contact angles other than 90 degrees are shown to disconnect
the transcritical bifurcations to flows with an even number of cells in the expected
manner. The loss of stability to single cell flows is associated with the breaking
of a reflectional symmetry about the middle of the domain and therefore occurs
at a pitchfork bifurcation point for contact angles both equal to, and less than,
90 degrees. c© 1998 Academic Press

1. INTRODUCTION

We consider a Newtonian fluid in a two-dimensional container as shown in Fig. 1, which
is heated from below along its lower surface0B. The container is assumed to have adiabatic
sidewalls0L and0R, and the upper surface of the fluid0F is exposed to the atmosphere.
When the free surface0F is horizontal, a conducting solution exists for which the free
surface is an isothermal surface. This conducting solution is stable for sufficiently small
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FIG. 1. Sketch of the physical domain.

temperature gradients, but loses stability to a convecting solution if the temperature of
the bottom boundary is increased beyond a critical value. Pearson [1] has shown that for
sufficiently thin layers the instability arises due to the temperature-dependent nature of
the surface tension, rather than due to buoyancy effects. The instability due to an inverted
density stratification dominates for thicker fluid layers.

For contact angles other than 90 degrees, the free surface is no longer an isothermal sur-
face, and non-zero shear stresses exist along the free surface, arising due to the temperature-
dependent nature of the surface tension. There is no conducting solution that satisfies both
the equilibrium and boundary conditions. The effect of non-horizontal free surfaces on
the qualitative nature of the bifurcation structure has previously been recognized by Davis
[2]. His discussion concerns Marangoni convection in cylindrical geometries. On general
grounds he argues that convectingO(2)-symmetric flows will arise continuously, but non-
axisymmetric flows must develop at a symmetry-breaking bifurcation point. Analogous
behaviour will be demonstrated for two-dimensional flows.

We investigate the effect of allowing contact angles other than 90 degrees and the attendant
loss of a conducting solution. An orthogonal mapping technique described by Cliffeet al.[3]
(and, for example, by Riskin and Leal [4]) is used to resolve the location of the deformable
free surface. By seeking steady solutions only, we avoid the complex issues surrounding
moving contact lines and time-dependent free surfaces. Since we can reasonably expect the
free surface to be a (single-valued) function of the horizontal coordinate and we know a
priori where the (steady) free surface is likely to be steepest, we are able to use a relatively
simple mapping technique compared to the sophisticated methods described by Tsiveriotis
and Brown [5] and Christadoulou and Scriven [6].
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Nonlinearities are present in both the governing equations which pertain in the interior
of the computational domain, and in the boundary conditions at the free surface. A jump
in pressure exists across the free surface that is proportional to the product of the surface
curvature and the (temperature-dependent) surface tension. We solve the full nonlinear
problem, and make no assumptions regarding the relative sizes of the inertial and diffusive
terms in the momentum equation. The contact angle need not be close to 90 degrees, nor
need the free surface curvature be small.

By combining extended system methods for locating singular points (for implementation
details see Cliffeet al. [7–9]) with the orthogonal mapping technique, we are able to
investigate the roles of buoyancy, surface tension, and contact angle on the bifurcation
structure of the solution set in a finite domain, when the free surface is required to be other
than horizontal. In order to describe the disconnections that occur when the free surface is
no longer constrained to be horizontal, we concentrate on flows for which the free-surface
deformations are small. We do so, not because of any limitations of our method, but because,
even for small free surface deformations, these disconnections become so large that it is
difficult to observe the relationships that necessarily exist between the horizontal and non-
horizontal free surface cases. The large quantitative effect of contact angles other than
90 degrees is illustrated in Fig. 6.

An essential component of our study was the use of a computer algebra system, in our
case REDUCE [10]. A finite-element analysis of the coupled system of partial differential
equations and boundary conditions governing the flow produces a finite-dimensional system
of algebraic equations. First- and second-order derivatives of these equations were required
in order to find regular solutions using Newton’s method and to locate singular points,
which were found as regular solutions of “extended systems” of equations. Derivatives with
respect to both the variables and parameters were necessary in order to perform continuation
with respect to a chosen parameter. The system of equations includes those describing
the orthogonal mapping, and the variables include the coordinates of the physical domain.
Automatic generation of the subroutines to compute derivatives was deemed to be essential.
Quadratic convergence of the Newton iteration was observed in all cases. More sophisticated
systems of elliptic equations to determine the mapping would make the use of a computer
algebra system even more important.

Considerable success has already been achieved in computing the onset of Marangoni
convection in non-deforming domains. Winterset al.[11], Dijkstra [12], Bergeonet al. [13],
and Evrenselametet al. [14] have examined flows in two-dimensional rectangular contain-
ers; Zaman and Narayanan [15] have considered the instability in cylindrical containers; and
more recently, Dijkstra [16, 17] and Dauby and Lebon [18] have performed computations
in three-dimensional domains. Other authors, amongst them Chenet al. [19], Floryan and
Chen [20], Lu [21], Sasmal and Hochstein [22], and Chippadaet al. [23] have performed
computations of flows driven by thermocapillary forces in deformable domains, but they
have all concentrated on the sidewall, rather than the bottom heated case. To the best of
our knowledge the present study is the first application of extended system techniques to
compute codimension-zero singularities (limit points and symmetry-breaking bifurcation
points) of a deforming free surface flow.

Much of the interest in Marangoni convection has arisen in the context of microgravity
environments due to the potential for growing high quality crystals in space. Kamotami
et al. [24] show that in low gravity environments, surface deformations can be large and
have a considerable affect on the flow. Kamotami and Platt [25] have addressed the simpler
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computational problem of flows in curved, but fixed free surfaces. We also concentrate
on the zero gravity case, but our technique assumes no surface location a priori, and permits
the free surface to deform as necessary. Note for example, the asymmetry in the heights of
the free surface at the left-hand and right-hand walls in Fig. 12, which was determined as
part of the solution.

2. THE GOVERNING EQUATIONS

We consider the flow of a Newtonian fluid in a two-dimensional domainÄ with bound-
ary 0 comprised of four parts0L , 0R, 0B, and 0F , as sketched in Fig. 1. Letting the
superscript∗ denote dimensional quantities and invoking the Boussinesq approximation,
the continuity, momentum, and temperature equations are

∇∗ · u∗ = 0,

ρ0
Du∗

Dt∗ = ∇∗ · τ ∗ − ρgj,

DT∗

Dt∗ = κ∇2
∗ T∗,

(1)

whereu∗(x∗) is the velocity vector at positionx∗ ∈ Ä, T∗(x∗) is the temperature, and

∇∗ = i
∂

∂x∗ + j
∂

∂y∗ ,

∇2
∗ = ∂2

∂x∗2
+ ∂2

∂y∗2
,

wherei andj are unit vectors in thex- andy-directions, respectively. The stress tensorτ ∗

is given by

τ ∗
i j = −p∗δi j + µ(u∗

i, j + u∗
j,i ), (2)

wherep∗(x∗) is the pressure,µ is the molecular viscosity, and

u∗
i, j = ∂u∗

i

∂x∗
j

.

The fluid densityρ(x∗) is assumed to vary with temperature as

ρ(x∗) = ρ0[1 − α(T∗(x∗) − T0)],

whereT0 is the temperature at the free surface of the conducting solution,ρ0 is the density at
temperatureT0, andα is the coefficient of thermal expansion. Consistent with the Boussinesq
approximation, the temperature-dependent densityρ appears only in the gravitational body
force term, whereg is the acceleration due to gravity. Finallyκ is the coefficient of thermal
diffusion.
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Equations (1) must be solved subject to the following boundary conditions,

u∗(x∗) = 0 for x∗ ∈ 0L , 0B, 0R,

u∗ · n = 0 for x∗ ∈ 0F ,

ni τ
∗
i j n j = K ∗σ(x∗)

= K ∗[σ0 − σ1(T∗(x∗) − T0)] for x∗ ∈ 0F ,

ti τ ∗
i j n j = t · ∇∗σ(x∗)

= −σ1[t · ∇∗T∗(x∗)] for x∗ ∈ 0F ,

T∗(x∗) = T1 for x∗ ∈ 0B,

n · ∇∗T∗(x∗) = 0 for x∗ ∈ 0L , 0R,

−k0[n · ∇∗T∗(x∗)] = h(T∗(x∗) − T0) for x∗ ∈ 0F ,

(3)

wheren and t are respectively the outward normal and tangent vectors on0, and K ∗ is
the curvature of the free surface. The surface tensionσ is assumed to vary linearly with
temperature as

σ(x∗) = σ0 − σ1(T
∗(x∗) − T0), for x∗ ∈ 0F ,

whereσ0 is the surface tension at temperatureT0 andσ1 is the rate of change of surface
tension with temperature. In the boundary condition for the temperature field at the free
surface,k0 is the thermal conductivity of the fluid andh is the surface thermal conductance.

We non-dimensionalize Eqs. (1) and boundary conditions (3) by choosing appropriate
length, velocity, and temperature scales. The depth of an undeformed fluid layer of equal
volume is chosen as the length scaled, i.e., d = volume/ l , wherel is the length of the
domain. The “Marangoni” velocityVM = (σ1βd)/µ is chosen as the velocity scale, where
β is the average temperature gradient from bottom to top. The appropriate time scale
is thend/VM = µ/(σ1β). Temperatures are non-dimensionalized asT = (T∗ − T0)/(βd).
We define seven non-dimensional quantities,

Aspect ratio, η = l

d
,

Biot number, L = hd

k0
,

Bond number, G = ρ0gd2

σ0
,

Capillary number, Ca = µκ

σ0d
,

Marangoni number, M = σ1βd2

µκ
,

Prandtl number, Pr = µ

ρ0κ
,

Rayleigh number, R = ρ0αβgd4

µκ
,

(4)
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so that Eqs. (1) become

∇ · u = 0,

M

Pr

Du
Dt

= ∇ · τ +
(

RT

M
− G

MC

)
j,

M
DT

Dt
= ∇2T,

(5)

where

∇ = i
∂

∂x
+ j

∂

∂y
,

∇2 = ∂2

∂x2
+ ∂2

∂y2
,

τi j = −pδi j + (ui, j + u j,i ),

(6)

andτ = τ ∗/(σ1β) and p = p∗/(σ1β).
The boundary conditions (3) become

u = 0 for x ∈ 0L , 0B, 0R,

u · n = 0 for x ∈ 0F ,

ni τi j n j = K

(
1

MC
− T

)
for x ∈ 0F ,

ti τi j n j = −t · ∇T for x ∈ 0F ,

T = 2 for x ∈ 0B,

n · ∇T = 0 for x ∈ 0L , 0R,

n · ∇T + LT = 0 for x ∈ 0F ,

(7)

whereK = K ∗d.
Noting that

u · n = 0 on0,

we recognize that one of the (local) element divergence constraints is redundant, and it is
replaced by a global volume constraint.

3. ORTHOGONAL MAPPING TECHNIQUE

In this section we briefly review the orthogonal mapping technique for solving viscous
free-surface flows that has been previously described by Cliffeet al. [3]. Cliffe et al. used this
approach to compute the free surface location of laminar flows down a shallow inclined plane
and over two sinusoidal bumps. Their results were compared with laboratory measurements
of the free surface heights for a range of Reynolds numbers varying from 0.3 to 25. For
all flow rates, the computations and experiments were found to agree to within 2% in an
appropriate norm.
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Let Ä(x, y) be the physical domain with four sides0L , 0B, 0R, and0F such as shown
in Fig. 1. We construct an orthogonal mapping(ψ(x, y), φ(x, y)) from Ä onto a reference
domainÄ′ where

Ä′ = {
(ψ, φ) : (ψ, φ) ∈ [− 1

2, 1
2

] × [0, 1]
}
, (8)

such that the level curves ofψ(x, y) and φ(x, y) are orthogonal, and the boundaries
0L , 0B, 0R, and0F are mapped ontoψ = − 1

2, φ = 0, ψ = 1
2, andφ = 1, respectively. The

system of partial differential equations and boundary conditions governing the flow in
the physical domainÄ(x, y) is then recast in terms of the new independent variables
(ψ, φ)∈ Ä′. The partial differential equations and boundary conditions defining the ortho-
gonal transformation are added to the equations governing the flow, and the combined sys-
tem is solved using a conventional finite-element approach. The resulting nonlinear system
of algebraic equations is solved by Newton’s method.

The coordinate transformation is orthogonal if

∇ψ · ∇φ = 0 for all (x, y) ∈ Ä,

which has the general solution

ψx = λφy,

ψy = −λφx,
(9)

whereλ depends on(x, y) (or equivalently(ψ, φ)). Using

ψx = J−1yφ, ψy = −J−1xφ, φx = −J−1yψ, φy = J−1xψ,

where

J = ∂(x, y)

∂(ψ, φ)
= det

(
xψ xφ

yψ yφ

)
is the Jacobian of the transformation, Eqs. (9) become

yφ = λxψ,

xφ = −λyψ.
(10)

Assumingx(ψ, φ) andy(ψ, φ) to have continuous second derivatives, equating cross deri-
vatives ofy(ψ, φ) andx(ψ, φ) respectively from (10), we have(

xφ

λ

)
φ

+ (λxψ)ψ = 0, (11)(
yφ

λ

)
φ

+ (λyψ)ψ = 0, (12)

which, givenλ(ψ, φ), provide two elliptic partial differential equations for(x, y) onÄ′.
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The boundary conditions forx(ψ, φ) and y(ψ, φ) are derived from the shapes of the
fixed boundaries of the physical domainÄ, from the orthogonality condition along the
boundaries ofÄ, from the kinematic boundary condition along the free surface0F , and
from the required contact angles. They are

x = −η/2, yψ = 0 onψ = −1

2
,

xφ = 0, y = 0 onφ = 0,

x = η/2, yψ = 0 onψ = 1

2
,

(13)
λ−1xφ = −yψ −uyψ + vxψ = 0 onφ = 1,

xψ + yψ tanθ = 0 at(ψ, φ) = (− 1
2, 1

)
,

xψ − yψ tanθ = 0 at(ψ, φ) = (
1
2, 1

)
,

whereη is the aspect ratio defined in Section 2, andθ is the prescribed contact angle.
For simplicity, we shall require thatλ(ψ, φ) be constant inÄ′ and achieve this by solving

∇2
′ λ(ψ, φ) = 0, (14)

with boundary conditions

n′ · ∇′λ = 0 for all (ψ, φ) ∈ 0′, (15)

where

∇′ = i
∂

∂ψ
+ j

∂

∂φ
,

∇2
′ = ∂2

∂ψ2
+ ∂2

∂φ2
,

andn′ is the outward-directed normal on the boundary0′. The constant value ofλ is de-
termined by invoking the orthogonality conditions at an interior point ofÄ′, e.g.,

yφ + xφ = λ(xψ − yψ) at (ψ, φ) = (
0, 1

2

)
. (16)

The corresponding weak equations are developed in Appendix A.

4. LOCATING SINGULARITIES

4.1. Computation of Z2 Symmetry-Breaking Points

The weak equations presented in Appendix A were solved via the finite-element method
using isoparametric quadrilateral elements with biquadratic interpolation of the physical
coordinatesx andy, the velocity componentsu andv, and the temperatureT. Discontinuous
linear interpolation of the pressure field was employed. The resulting nonlinear system of
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equations may be written as

f (a, b) = 0, f : RN × Rp 7→ RN . (17)

The finite-dimensional system of nonlinear algebraic equations (17) is equivariant with
respect to an(N × N) orthogonal matrixS, such thatS2 = I , but S 6= I , i.e.,

Sf (a, b) = f (Sa, b). (18)

The orthogonal matrixS induces a unique decomposition ofRN into symmetric and anti-
symmetric subspaces,

RN = RN
s ⊕ RN

a ,

where

RN
s = {x ∈ RN : Sa = a},

RN
a = {x ∈ RN : Sa = −a}.

Symmetric solutions are those for which

x(ψ, φ) = −x(−ψ, φ),

y(ψ, φ) = y(−ψ, φ),

λ(ψ, φ) = λ(−ψ, φ),

u(ψ, φ) = −u(−ψ, φ),

v(ψ, φ) = v(−ψ, φ),

p(ψ, φ) = p(−ψ, φ),

T(ψ, φ) = T(−ψ, φ).

Anti-symmetric solutions are those for which

x(ψ, φ) = x(−ψ, φ),

y(ψ, φ) = −y(−ψ, φ),

λ(ψ, φ) = −λ(−ψ, φ),

u(ψ, φ) = u(−ψ, φ),

v(ψ, φ) = −v(−ψ, φ),

p(ψ, φ) = −p(−ψ, φ),

T(ψ, φ) = −T(−ψ, φ).

At a symmetry breaking bifurcation point(a0, b0),

∂f
∂a

∣∣∣∣
(a0,b0)

z = 0,

wherea0 ∈ RN
s and the null eigenvector,z∈ RN

a .
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Since the symmetries of the solution and eigenvector are known, all computations may
be performed in one-half of the domain. The boundary conditions appropriate toÄ′

− where

Ä′
− = {

(ψ, φ) : (ψ, φ) ∈ [− 1
2, 0

] × [0, 1]
}

are

xφ = 0, y = 0, u = v = 0, T = 2 for ψ ∈[−1
2, 0

]
, φ = 0,

x = −η/2, yψ = 0, u = v = 0, Tψ = 0 for ψ = −1

2
, φ ∈ [0, 1],

xψ + yψ tanθ = 0 at(ψ, φ) = (− 1
2, 1

)
,∫ ψ=0

ψ=−1/2
−yψ dψ = 0 for φ = 1,

−uyψ + vxψ = 0 for ψ ∈ [− 1
2, 0

]
, φ = 1,

∫ ψ=0

ψ=−1/2

(
1

MC
− T

)
xψ

1√
x2

ψ + y2
ψ

dψ = 0 for φ = 1,

∫ ψ=0

ψ=−1/2

(
1

MC
− T

)
yψ

1√
x2

ψ + y2
ψ

dψ = 0 for φ = 1, (19)

∫ ψ=0

ψ=−1/2
LT

√
x2

ψ + y2
ψ dψ = 0 for φ = 1.

Odd symmetry boundary conditions onx for ψ = 0, φ ∈ [0, 1].
Even symmetry boundary conditions ony for ψ = 0, φ ∈ (0, 1).
Even symmetry boundary conditions onλ for ψ = 0, φ ∈ [0, 1

2) ∪ ( 1
2, 1],

andyφ + xφ = λ(xψ − yψ) at (ψ, φ) = (0, 1
2).

Odd symmetry boundary conditions onu for ψ = 0, φ ∈ (0, 1].
Even symmetry boundary conditions onv, T for ψ = 0, φ ∈ (0, 1].

When computing a symmetric solution onÄ′
−, a global volume condition is required.

Non-slip velocity boundary conditions are imposed alongφ = 0 andψ = − 1
2, the kinematic

condition is applied along the free surfaceφ = 1, andu = 0 along the symmetry axisψ = 0
by symmetry. In other words

u · n = 0 on0,

and one of the (local) element divergence constraints is redundant. We replace one of the
element divergence constraints by a global volume constraint. When computing the null
eigenvector on one-half of the domain, theu-velocity component of the eigenvectorû is
not required to vanish by symmetry alongψ = 0. All element divergence constraints are
required and we remove the global constraint and retain all the pressure equations when
computing the null eigenvector.

Theλ components of the null eigenvectorλ̂ are required to be zero everywhere. In order
to ensure this we replace the orthogonality condition onλ at (0, 1

2) used when computing
the solution with a condition that̂λ = 0 at(0, 1

2) when computing the eigenvector.
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At a singular point, the kinematic condition requires that

−u
∂ ŷ

∂ψ
+ v

∂ x̂

∂ψ
− û

∂y

∂ψ
+ v̂

∂x

∂ψ
= 0, (20)

along the free surface, whereu and v are the two velocity components of the solution
and û and v̂ denote the two velocity components of the null eigenvector. Equation (20)
is used to determine they-component of the null eigenvectorŷ at each node along the
free surface. For all symmetric solutions, regardless of the value of the contact angle, the
velocity componentsu andv are zero at the centre of the free surface. Bothu = 0 and
∂y
∂ψ

= 0 by symmetry. The latter condition requires that the free surface has zero slope at the
centerline and thereforev = 0 at the centerline. Along the symmetry axis, Eq. (20) reduces
to v̂ = 0, since∂x

∂ψ
6= 0 alongψ = 0. For symmetric solutions, thev-component of velocity

is symmetric aboutψ = 0, so thev-component of a symmetry-breaking eigenvector must
be antisymmetric aboutψ = 0, and therefore ˆv must be zero along the symmetry axis. We
see that the kinematic condition used to determineŷ at the middle of the free surface is
identical to the condition on ˆv which is imposed by symmetry. A naive implementation will
have two linearly dependent equations. A non-singular system of equations is obtained by
replacing (20) atψ = 0 with ŷ = 0, since they-component of the eigenvector must be zero
alongψ = 0 by reason of it being antisymmetric aboutψ = 0.

With these extra conditions, the Werner–Spence extended system [26] can be used as
usual.

4.2. Computation of Limit Points

When computing limit points along branches of symmetric solutions, at which the null
eigenvector is symmetric, the problems described in the previous section do not arise,
since there is no symmetry requirement for ˆv to be zero along the centerline. Indeed in
the interior of the flow, thev-component of the eigenvector is non-zero alongψ = 0 and is
required to be zero at the free surface due to the kinematic boundary condition only. (For
symmetric solutions, the free surface must be horizontal at the centerline andu = 0 along
the centerline.) When computing onÄ′

−, we retain the global constraint when computing
the eigenvector, since for symmetric eigenvectors

û · n = 0 on0.

We again forcêλ to be zero at(0, 1
2). With this provision, the Moore–Spence extended

system [27] may then be used directly.

5. RESULTS

Our particular implementation of the orthogonal mapping technique has been successfully
tested against laboratory measurements of the free-surface flow down an inclined plane and
over two sinusoidal bumps for a range of flow rates as reported in Cliffeet al. [3].

An additional test problem was investigated in order to determine convergence behaviour.
In the absence of gravity and temperature gradients, there is no fluid motion in a two-
dimensional domain like that shown in Fig. 1, and the free surface has constant curvature
and is an arc of a circle whose radius is dependent upon the contact angle. This is one of the
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few exact solutions of the Navier–Stokes equations with a non-horizontal free surface, if
unfortunately a very simple one. However, since the arc of a circle cannot be represented ex-
actly using piecewise quadratic interpolation of the mapping functionsx(ψ, φ) andy(ψ, φ),
we can use this exact solution to study the rate of convergence of our method. Due to the
normal stress boundary condition, the location of the free surface depends on the curvature
of the surface and thereby on second derivatives ofx(ψ, φ) andy(ψ, φ). These variables are
interpolated by piecewise quadratic functions on quadrilateral elements. Girault and Raviart
[28, p. 158] show that theglobalconvergence of the interpolant is cubic in theL2 semi-norm
and quadratic in theH1 semi-norm. Their result cannot be extended to theH2 semi-norm
since this is undefined (even weakly) for the interpolant. We consider instead the interpola-
tion on an element-by-element basis. Brenner and Scott [29, p. 104] show that on each ele-
ment the local interpolant converges linearly inh in theH2 semi-norm. By summing over all
elements [29, p. 107] they then obtain an appropriate equivalent global estimate. The linear
convergence of the free surface location observed in Table 1 reflects the linear convergence
of the interpolant in theH2 semi-norm. The pressure field converges linearly to a constant
pressure field that is equal to the product of the surface tension and surface curvature. Since
we would expect a piecewise linear interpolant to represent a constant field exactly on any
mesh, the observed linear convergence of the pressure field is a further consequence of
the linear convergence of the free surface. If, by contrast, the nodes along the free surface
areconstrainedto lie on the arc of a circle, and the normal and tangential stress boundary
conditions along the curved surface are used to solve for the two velocity components,
the solution to the discrete equations reproduces the exact (constant) pressure field on any
mesh.

As a third test, we considered the onset of convection in the absence of gravity with a
90-degree contact angle. In Table 2 we show the effect of decreasing capillary number on
the location of three different critical points. The first critical Marangoni numberMaB1

indicates the loss of stability of the conducting solution at a symmetry-breaking bifurcation
to a single-cell flow at an aspect ratio of one. The second critical Marangoni numberMaT1

indicates the loss of stability of the conducting solution at a transcritical bifurcation point
to a two-cell flow at an aspect ratio of two. The Marangoni numbers in the final column,
MaL1, are those at the limit point associated with the transcritical bifurcation to two-cell
flows at an aspect ratio of two. For this test, the other parameters were Rayleigh number
zero, Bond number zero, Biot number one, and Prandtl number one. The corresponding
critical Marangoni numbers computed by Winterset al. [11] on equivalent meshes with
a horizontal, non-deforming upper surface, complete the table. As expected, the critical

TABLE 1

Convergence Study in the Absence of Gravity and Temperature Gradients

Mesh L2 velocity error L2 pressure error L2 surface error

2× 2 0.1833E+00 0.2107E+00 0.8037E−02
4× 4 0.1242E−01 0.2186E−01 0.5173E−03
8× 8 0.2547E−02 0.4839E−01 0.7405E−03

16× 16 0.2757E−03 0.3495E−01 0.3543E−03
32× 32 0.2806E−04 0.2267E−01 0.1567E−03
64× 64 0.2883E−05 0.1451E−01 0.6881E−04
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TABLE 2

Comparison of Critical Marangoni Numbers for

Deforming and Rigid Upper Surfaces

Ca MaB1 MaT1 MaL1

5.0E−03 140.18 137.23 137.20
4.0E−03 159.38 147.58 147.48
3.0E−03 178.42 154.96 154.80
2.0E−03 193.98 159.83 159.63
1.0E−03 205.03 163.07 162.85
1.0E−04 211.61 165.11 164.88
1.0E−05 212.14 165.29 165.06
rigid[11] 212.27 165.307 165.119

Marangoni numbers approach those on an undeforming domain as the surface tension atT0,
i.e.,σ0, increases. The two bifurcation points reported in [11] lie on the convecting solution
branch for which the velocity field is identically zero and the temperature field is linear with
isotherms that are parallel to the free surface.

Contact angles other than 90 degrees produce a qualitative change in the nature of the
solution set. When the contact angle is 90 degrees, a conducting solution exists for which
the free surface is an isothermal surface. If the free surface is forced to be concave or convex
because the contact angle is greater than or less than 90 degrees, the free surface cannot be
an isothermal surface and unbalanced surface tension forces must act along it. These unba-
lanced forces necessarily drive a flow whose strength depends upon the Marangoni number.
As a result of the loss of a conducting or “trivial” solution, the transcritical bifurcation to
two-cell flows is disconnected.

If the free surface is concave, the primary branch, i.e., the solution branch that is con-
tinuously connected to the unique solution at small Marangoni number, is a two-cell flow
with upwelling along the centreline. Two-cell flows with down-welling along the centreline
occur as disconnected solutions. It is reasonable that two-cell flows with upwelling along
the centreline should be preferred, since the concave free surface is hotter at its middle
(which is nearer the hot bottom surface) than at its sides. Unbalanced surface tension forces
are therefore directed from the centre towards the wall.

The loss of stability to single-cell flows is associated with the breaking of theZ2 symmetry
about the vertical midplane. Provided the contact angles at the left-hand and right-hand walls
are equal, solutions along the primary solution branch respect this symmetry, and single-cell
flows still arise at a pitchfork bifurcation point.

All the computations discussed below were performed with Rayleigh number zero, Bond
number zero, Biot number one, and Prandtl number one. Loci of singular points for a contact
angle of 89.4 degrees and capillary number of 10−5 are shown in Fig. 2. A contact angle near

FIG. 2. Loci of singular points forθ = 89.43 degrees andCa= 10−5. The solid curveACB is a locus of
symmetry-breaking bifurcation points on the primary two-cell branch, and the chained lineHQ, is a locus of limit
points on the one-cell branches. The solid curveDE, is a locus of limit points on the disconnected two-cell branch,
and the dashed lineFG, is a locus of symmetry-breaking bifurcation points on this branch. The narrow dashed
lines are paths of bifurcation points forθ = 90 degrees andCa = 10−5. (a) Detail near quartic pointQ. (b) Detail
near double singular pointM .
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90 degrees and a small capillary number were chosen so as to highlight the connections
with the known results for a rigid horizontal free surface, not because of any inherent
limitations in our method. The solid curveACBis a path of symmetry-breaking bifurcation
points on the primary solution branch. The primary branch is the branch of solutions that is
continuously connected to the unique solution at small Marangoni numbers. Solutions along
the primary branch are two-cell flows with upwelling along the centreline. The pointC is a
C+ coalescence point (see [9]) from which a closed loop of one-cell flows develops. The
chained line,HQ, is a path of limit points along the one-cell flow branches. It terminates
at a quartic bifurcation pointQ, where the bifurcation to single cell flows has locally
quartic contact. The quartic pointQ indicates the aspect ratio at which the symmetry-
breaking bifurcation at the larger Marangoni number along the primary branch changes
from supercritical to subcritical. For aspect ratios less than that at the quartic bifurcation
point, the one-cell flows will demonstrate hysteresis.

The other solid curveDE in Fig. 2 is the locus of limit points along the disconnected
two-cell branch. Two-cell flows with down-welling along the centreline exist for Marangoni
numbers exceeding that alongDE. These two-cell flows are, however, unstable with respect
to anti-symmetric disturbances until the Marangoni number exceeds that along a locus of
secondary bifurcation points, a part of which is indicated by the dashed lineFG.

The thin dashed lines in Fig. 2 represent loci of singularities for the case with 90 degree
contact angles and capillary number of 10−5. The critical Marangoni numbers for the
bifurcations to one- and two-cell flows are shown, as are the critical Marangoni numbers at
turning points along the one-cell solution branches and at secondary (symmetry-breaking)
bifurcation points along the two-cell solution branches.

Details near the quartic pointQ and a double singular pointM are shown in Figs. 2a and
2b, respectively. The apparent self intersection of the path of symmetry-breaking bifurcation
points in Fig. 2b is avoided as these bifurcations lie on two different solution surfaces.
Secondary bifurcation points that lie on the disconnected branch of two-cell solutions (with
downwelling along the centreline) are indicated by+. Secondary bifurcation points that lie
on the solution branch corresponding to the conducting solution for horizontal free surfaces,
are indicated by◦. The pointM is a double singular point, where the turning point along
the disconnected branch of two-cell flows and a symmetry-breaking bifurcation point are
coincident. AC+ coalescence pointN, and aC− coalescence pointO, are also present in
this figure.

In Figs. 3, 4, and 5 we plot the computed bifurcation diagrams at aspect ratios 1.6, 1.7,
and 2.0, respectively. The measure chosen to characterize the solutions is the sum of the hor-
izontal and vertical velocities along the centreline at(ψ, φ)= (0, 1/4). The thin horizontal
dotted lines areu(0, 1/4)+v(0, 1/4) = 0. Noting thatu(0, 1/4) = 0 for the symmetric even-
cell flows, these figures clearly show that the primary two-cell flows have upwelling along
the centreline, while the disconnected two-cell flows have down-welling along the centre-
line. The symmetry-breaking bifurcation at the larger Marangoni number along the primary
branch is supercritical in Fig. 3 since the aspect ratio 1.6 is less than that at the quartic bifur-
cation point,Q, Fig. 2a. The corresponding bifurcation point in Fig. 4 is subcritical since the
aspect ratio 1.7 is greater than that at the quartic bifurcation point. Figures 3 and 4 both show
branches of one-cell flows arising at symmetry-breaking bifurcation points terminating on
the branch of two-cell flows with upwelling at the centre. This is consistent with the findings
of Dijkstra [12] for horizontal free surfaces. Dijkstra argues that although initially purely an-
tisymmetric, nonlinear effects cause clockwise rotating single-cell flows to become centred
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FIG. 3. Bifurcation diagram forη = 1.6, θ = 89.43 degrees, andCa = 10−5. The ordinate isu(0, 1/4) +
v(0, 1/4).

nearer to the right hand wall, allowing a small anticlockwise rotating eddy to develop in the
top left-hand corner. This eddy grows with Marangoni number and eventually a symmetric
two-cell flow with upwelling at the centre arises. The same argument suitably modified ap-
plies to anticlockwise rotating cells. The two-cell flow arises either continuously (see [12],
Fig. 4a) or via a hysteretic jump (see [12], Fig. 12b) according to whether the aspect ratio is
greater than or less than that at the quartic point for 90 degree contact angles shown in Fig. 2a.

The loop of one-cell flows collapses at theC+ coalescence pointC shown in Fig. 2,
and for a range of aspect ratios exceeding that at this coalescence point, the bifurcation

FIG. 4. Bifurcation diagram forη = 1.7, θ = 89.43 degrees, andCa= 10−5. The ordinate isu(0, 1/4) +
v(0, 1/4).
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FIG. 5. Bifurcation diagram forη = 2.0, θ = 89.43 degrees, andCa = 10−5. The ordinate isu(0, 1/4) +
v(0, 1/4).

diagrams are as shown in Fig. 5. As the contact angle decreases, the coalescence point
moves rapidly towards smaller values of the aspect ratio and larger values of the Marangoni
number, greatly reducing the region of parameter space in which one-cell flows can occur.
In Fig. 6 we plot the critical Marangoni numbers for bifurcation to 1-cell and 2-cell flows
for contact angles of 90 degrees, and the branch of symmetry-breaking bifurcation points

FIG. 6. Loci of singular points forCa = 10−5. The chained line is the locus of symmetry-breaking bifurcation
points for a horizontal free surface. The dashed line is the locus of transcritical bifurcation points for a horizontal
free surface. The two solid lines show the loci of symmetry-breaking bifurcation points on the primary two-cell
branch forθ = 89.43 degrees (squares) and 84.27 degrees (circles).
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on the primary two-cell branch for contact angles of 89.43 and 84.27 degrees. It is clear
that even contact angles close to 90 degrees disconnect the bifurcation structure by a large
amount and comparisons between the horizontal rigid and deformable free-surface cases
can only be sensibly made for contact angles near 90 degrees.

The symmetry breaking and symmetry preserving properties of the different types of
singularities are evident from the null eigenvectors shown in Figs. 7a–e and 8a–e. The null
eigenvector at the symmetry-breaking bifurcation point for aspect ratio 1.7 and Marangoni
number 143 is shown in Fig. 7, and is clearly antisymmetric. The null eigenvector at the
limit point of the disconnected two-cell flows at aspect ratio 1.7 and Marangoni number
221 is shown in Fig. 8, and is clearly symmetric. The null eigenvectors are scaled so that
thev-component of the eigenvector at(ψ, φ) = (−1/4, 1/4) is equal to 1 in Fig. 7 and the
v-component of the eigenvector at(ψ, φ) = (0, 1/8) is equal to 1 in Fig. 8.

The results of a convergence study for three of the more interesting singularities at contact
angle of 89.4 degrees and capillary number of 10−5 are presented in Table 3. We have chosen
to examine the convergence at the symmetry-breaking bifurcation point on the primary flow
at the larger Marangoni numberMaB2, and the limit point on the branch of one-cell flows at
an aspect ratio of 1.6,MaL2. The limit point along the branch of disconnected two-cell flows
at an aspect ratio of 1.7,MaL1, is also investigated. (Note that the symmetry-breaking bifur-
cation points were computed onÄ′

− using only one-half the number of elements indicated.)
In all three columns of Table 3, the critical Marangoni number appears to be converging

with h at a rate that is faster than the linear rate expected on the basis of our test prob-
lems. However, the minimum free surface height (which occurs atψ = 0) at the symmetry-
breaking bifurcation pointsMaB2, converges at a rate that is more obviously linear, as is
shown in Table 4.

Figures 9, 10, and 11 show the streamfunction and isotherms for the stable solutions at
aspect ratio 1.7 and Marangoni numbers 100, 190, and 250, respectively.

The details of the mechanism by which one-cell and two-cell flows exchange stability as
the aspect ratio increases when the free surface is constrained to be flat have been reported by
Dijkstra [12]. An entirely analogous sequence of bifurcation diagrams arises when the free
surface is deformed, differing only due to the disconnection of the transcritical bifurcations.
When such comparisons are drawn, the disappearance of one-cell flows at the coalescence
pointC is not surprising, as it can be seen to correspond to the disappearance of the one-cell
branches at the multiple bifurcation point when the free surface is horizontal and rigid. A
further path of limit points and a path of Hopf bifurcation points have been omitted from
Fig. 2b as a detailed comparison of the two exchange scenarios will appear later.

An interesting analytical result has been reported by Anderson and Davis [30]. These
authors seek separable solutions to the coupled thermal and convection problem in wedge
geometries with an insulating wall and an insulating free surface. For a contact angle
θ = 90 degrees, they find a separable solution which satisfies all but the normal stress
boundary conditions, in which the temperature field has a logarithmic singularity at the
corner. Their solution is valid in a neighbourhood of radiusr ¿ d/Ma of the contact point
between the insulated sidewall and the free surface. For contact anglesθ < 90 degrees,
they present separable solutions, which again satisfy all but the normal stress boundary
condition, in which the temperature and velocity fields are smooth and bounded. We have
not observed any evidence of logarithmic behaviour in the temperature field for contact
angles of 90 degrees. Anderson and Davis do not claim to have found theonly possible
solution and further note that, “This example shows that single-phase models with separable
solutions forms may be too idealized in certain areas.”
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FIG. 7. Symmetry-breaking null eigenvector forη = 1.7, Ma= 143.11,θ = 89.43 degrees, andCa= 10−5.
Dashed lines correspond to negative values and solid lines to positive values. All contours are equally spaced. (a)
x-component: contour values 0.0 to−1.25× 10−2; (b) y-component: contour values−1.8 × 10−2 to 1.8 × 10−2;
(c) u-component: contour values−3.5 to 16.5; (d)v-component: contour values−3.15 to 3.15; (e)T-component:
contour values−45.0 to 45.0. The eigenvector is scaled so that thev-component at(ψ, φ) = (−1/4, 1/4) is equal
to 1.



         

212 CLIFFE AND TAVENER

FIG. 7—Continued

In Table 5 we list the critical Marangoni numbers at limit points on two different convect-
ing solution branches as a function of the contact angleθ . The limit point atMaL1 occurs
on the disconnected branch of two-cell flows at aspect ratio 1.6, and the limit pointMaL2

occurs on the single-cell flow branches an aspect ratio of 1.4. Both were computed for a
capillary number of 10−5. For contact anglesθ < 90 degrees, solutions with non-singular
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FIG. 7—Continued

temperature and velocity fields are presented by Anderson and Davis. As the contact angle
increases, both critical Marangoni numbers converge smoothly to the value that is computed
for a 90 degree contact angle. From the evidence presented in Table 5, it seems reasonable to
suppose that we can accurately compute bifurcations from convecting flows even at contact
angles of 90 degrees.

Our technique can of course be applied to flows with much larger free surface defor-
mations as is indicated by the solutions shown in Figs. 12 and 13. Figure 12 illustrates a
one-cell flow at an aspect ratio of 1.2 and a Marangoni number of 200, with a contact angle
of 75.5 degrees and a capillary number of 2.75× 10−3. Keeping all other parameters fixed,
single cell flows do not exist for much smaller contact angles than shown here.

Figure 13 illustrates a two-cell flow at an aspect ratio of 1.7 and a Marangoni number of
250, with a contact angle of 77.5 degrees and a capillary number of 2.75× 10−3. It is clear
that much larger free surface deformations are possible for two-cell flows.

The temperature field for the conducting solution that exists for a 90 degree contact angle
is linear with the isotherms parallel to the free surface, and is clearly regular at the contact
point. This is not a contradiction of Anderson and Davis’ result, since they found a singular
temperature field at a contact angle of 90 degrees to be necessary only for their particular
separable, convectingsolutions. In Fig. 14 we plot the critical Marangoni number at the
first symmetry-breaking bifurcation point against contact angle for an aspect ratio of one.
We again observe very smooth behviour with respect to the contact angle. The limiting case
at a contact angle of 90 degrees is the critical Marangoni number at the first symmetry-
breaking bifurcation from the conducting solution. Moffatt [31] presents solutions for the
externally driven isothermal flow near a sharp corner, in which one side of the wedge is a
wall along which non-slip boundary conditions are applied and the other is a free surface.
He shows that for contact angles less than approximately 78 degrees the solution is a series
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FIG. 8. Symmetry-preserving null eigenvector forη = 1.7,Ma= 220.71,θ = 89.43 degrees, andCa= 10−5.
Dashed lines correspond to negative values and solid lines to positive values. All contours are equally spaced.
(a) x-component: contour values−9.0× 10−3 to 9.0× 10−3; (b) y-component: contour values−1.6875× 10−2

to 1.6875× 10−2; (c) u-component: contour values−45.0 to 45.0; (d)v-component: contour values−12.25 to
19.25; (e)T-component: contour values−124.875 to 124.875. The eigenvector is scaled so that thev-component
at (ψ, φ)= (0, 1/8) is equal to 1.
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FIG. 8—Continued

of rapidly decaying eddies. We have not observed such eddies, and given their very rapid
rate of decay, an extremely sensitive calculation would be required in order to observe them.
We plan to conduct a more detailed investigation of corner flows with boundary conditions
more closely approximating those of Anderson and Davis and Moffatt.

The power of extended system techniques to investigate a multi-dimensional parameter
space is further illustrated in Fig. 15. We plot the critical Marangoni number at the first
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FIG. 8—Continued

symmetry-breaking bifurcation point at an aspect ratio of one, as the capillary number is
varied between 0.1 and 10−5.

6. CONCLUSIONS

We have developed a method for computing bifurcations of free-surface flows by com-
bining an orthogonal mapping technique with an extended system approach for locating
singularities. The mapping from the physical domain to a reference domain is computed as
the solution to two coupled elliptic partial differential equations. First- and higher order
derivatives of the discretized mapping equations, equilibrium equations, and nonlinear
boundary conditions are required in order to construct and solve the extended systems
by Newton’s method. A computer algebra system, in our case REDUCE, was found to
be essential to construct the subroutines to evaluate such derivatives. In two-dimensional
domains, we have shown that contact angles other than 90 degrees produce the expected
qualitative change (disconnection) in the bifurcations leading to Marangoni convection.
Preliminary investigations have illustrated the power of our method to explore the multi-
dimensional parameter space.

TABLE 3

Grid Refinement Study for the Location of Critical Points

Mesh MaL1 MaB2 MaL2

16× 16 220.712 238.069 239.282
32× 32 220.661 238.033 239.244
64× 64 220.656 238.031 239.242
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TABLE 4

Grid Refinement Study for the Minimum

Free Surface Height at a Critical Point

Mesh Minimum free surface height

16× 16 0.998653661
32× 32 0.998653447
64× 64 0.998653392

APPENDIX A: WEAK FORMULATION

The governing equations and boundary conditions can now be written in weak form in
the usual manner. We make extensive use of Green’s second identity∫

Ä

g[∇ · F] d A=
∫

0

g[n · F] ds−
∫

Ä

[∇g · F] d A

and transform integrals over the physical domainÄ to integrals over the reference domain
Ä′ where necessary.

FIG. 9. Solution forη = 1.7, Ma= 100, θ = 89.43 degrees, andCa= 10−5. (a) Streamfunction: contours
are equally spaced between−5.4 × 10−5 and 5.4 × 10−5. Dashed lines correspond to negative values (clockwise
rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are equally spaced.



                  

218 CLIFFE AND TAVENER

FIG. 10. Solution forη = 1.7, Ma= 190,θ = 89.43 degrees, andCa= 10−5. (a) Streamfunction: contours
are equally spaced between−3.4×10−3 and−2.0×10−4. Dashed lines correspond to negative values (clockwise
rotation). The solid line corresponds to 5.0×10−5 (anticlockwise rotation). (b) Temperature: isotherms are equally
spaced.

Let ξ x(ψ, φ) be a suitable test function. Then from (11) the weak equation forx(ψ, φ) is∫
Ä′

ξ x
[
(λxψ)ψ + (

λ−1xφ

)
φ

]
dψ dφ.

Rewriting this in divergence form∫
Ä′

ξ x

[
∇′ ·

(
λxψ

λ−1xφ

)]
dψ dφ

=
∫

0′
ξ x

[
n′ ·

(
λxψ

λ−1xφ

)]
ds−

∫
Ä′

[(
ξ x
ψ

ξ x
φ

)
·
(

λxψ

λ−1xφ

)]
dψ dφ

= −
∫

φ=1
yψξ x dψ −

∫
Ä′

[
(λxψ)ξ x

ψ + (
λ−1xφ

)
ξ x
φ

]
dψ dφ

= 0, (21)

since test functions forx(ψ, φ) must be zero onψ = −1/2 andψ = 1/2 where Dirichlet
boundary conditions are imposed,xφ = 0 onφ = 0 andλ−1xφ = −yψ onφ = 1.
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FIG. 11. Solution forη = 1.7, Ma= 250,θ = 89.43 degrees, andCa= 10−5. (a) Streamfunction: contours
are equally spaced between−2.7 × 10−3 and 2.7 × 10−3. Dashed lines correspond to negative values (clockwise
rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are equally spaced.

Similarly given a suitable test functionξ y(ψ, φ), then from (12) the weak equation for
y(ψ, φ) is∫

Ä′
ξ y

[
(λyψ)ψ + (

λ−1yφ

)
φ

]
dψ dφ

=
∫

Ä′
ξ y

[
∇′ ·

(
λyψ

λ−1yφ

)]
dψ dφ

=
∫

0′
ξ y

[
n′ ·

(
λyψ

λ−1yφ

)]
ds−

∫
Ä′

[(
ξ

y
ψ

ξ
y
φ

)
·
(

λyψ

λ−1yφ

)]
dψ dφ

=
∫

φ=1
λ−1yφξ y dψ −

∫
Ä′

[
(λyψ)ξ

y
ψ + (

λ−1yφ

)
ξ

y
φ

]
dψ dφ

= 0, (22)

since test functions fory(ψ, φ) must be zero onφ = 0 where a Dirichlet boundary condition
is imposed andyψ = 0 onψ = −1/2 andψ = 1/2. The orthogonality condition alongφ = 1



         

TABLE 5

Critical Marangoni Numbers vs Contact Angle

at Two Limit Points

Contact angle (radians) MaL1 MaL2

π/2− 0.0100 239.24 340.44
π/2− 0.0050 242.17 346.54
π/2− 0.0010 244.67 351.72
π/2− 0.0001 245.25 352.92

π/2 245.32 353.06

FIG. 12. Solution forη = 1.2,Ma= 200,θ = 75.5 degrees, andCa= 2.75×10−3. (a) Streamfunction: contours
are−3.0 × 10−4, −2.0 × 10−4, −1.0 × 10−4, then equally spaced between 4.5 × 10−4 and 3.15× 10−3. Dashed
lines correspond to negative values (clockwise rotation) and solid lines to positive values (anticlockwise rotation).
(b) Temperature: isotherms are equally spaced.
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FIG. 13. Solution forη = 1.7, Ma= 250,θ = 77.5 degrees, andCa= 2.75× 10−3. (a) Streamfunction: con-
tours are equally spaced between−4.5× 10−3 and 4.5× 10−3. Dashed lines correspond to negative values (clock-
wise rotation) and solid lines to positive values (anticlockwise rotation). (b) Temperature: isotherms are equally
spaced.

is imposed via thex-equation. We use the discretized kinematic boundary to solve for the
y-degree of freedom at a node along the free surface.

The weak equation forλ(ψ, φ) is∫
Ä′

ξλ[∇′ · ∇′λ] dψ dφ =
∫

0′
ξλ[n′ · ∇′λ] ds−

∫
Ä′

[∇′ξλ · ∇′λ] dψ dφ

= −
∫

Ä′

[
λψξλ

ψ + λφξλ
φ

]
dψ dφ

= 0, (23)

whereξλ(ψ, φ) is a suitable test function.
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FIG. 14. Critical Marangoni number at the first symmetry breaking bifurcation point vs contact angle for
η = 1 andCa= 10−5.

The weak form of the momentum equations is∫
Ä

ξw ·
[

M

Pr

Du
Dt

− ∇ · τ +
(

G

MC
− RT

M

)
j
]

dx dy= 0,

where

ξw =
(

ξu(x(ψ, φ), y(ψ, φ))

ξv(x(ψ, φ), y(ψ, φ))

)

FIG. 15. Critical Marangoni number at the first symmetry breaking bifurcation point vs capillary number for
η = 1 andθ = 90 degrees.
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is a suitable vector test function for the velocity(
u(x(ψ, φ), y(ψ, φ))

v(x(ψ, φ), y(ψ, φ))

)
.

Derivatives with respect tox andy must be transformed to derivatives with respect to the
independent variablesψ andφ, and the integral, which is initially taken over the physical
domainÄ, must be transformed to an integral overÄ′.

The inertial terms are

∫
Ä

ξu

[
M

Pr

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)]
dx dy

=
∫

Ä

ξu

[
M

Pr

(
∂u

∂t
+ u(uψψx + uφφx) + v(uψψy + uφφy)

)]
dx dy

=
∫

Ä

ξu

[
M

Pr

(
∂u

∂t
+ u(uψ yφ − uφ yψ)J−1 − v(uψ xφ − uφxψ)J−1

)]
dx dy

=
∫

Ä′

M

Pr

[
J

∂u

∂t
+ u(uψ yφ − uφ yψ) − v(uψ xφ − uφxψ)

]
ξu dψ dφ, (24)

and

∫
Ä

ξv

[
M

Pr

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)]
dx dy

=
∫

Ä′

M

Pr

[
J
∂v

∂t
+ u(vψ yφ − vφ yψ) − v(vψ xφ − vφxψ)

]
ξv dψ dφ. (25)

Applying Gauss’s theorem ∫
Ä

F j, j d A =
∫

0

Fj nj ds,

the term involving the divergence of the stress tensor becomes

−
∫

Ä

ξw
i τi j , j dx dy= −

∫
0

ξw
i τi j n j ds+

∫
Ä

ξw
i, j τi j dx dy

= −
∫

0

ξw
i τi j n j ds+

∫
Ä

ξw
i, j [−pδi j + (ui, j + u j,i )] dx dy. (26)

The pressure terms in (26) are

−
∫

Ä

p
∂ξw

i

∂xi
dx dy= −

∫
Ä

p
[(

ξu
ψψx + ξu

φ φx
) + (

ξv
ψψy + ξv

φφy
)]

dx dy

= −
∫

Ä′
p
[(

ξu
ψ yφ − ξu

φ yψ

) − (
ξv
ψ xφ − ξv

φ xψ

)]
dψ dφ. (27)
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The first of the pair of velocity terms in (26) is∫
Ä

ui, j ξ
w
i, j dx dy

=
∫

Ä

uxξ
u
x + uyξ

u
y + vxξ

v
x + vyξ

v
y dx dy

=
∫

Ä

[
(uψψx + uφφx)

(
ξu
ψψx + ξu

φ φx
) + (uψψy + uφφy)

(
ξu
ψψy + ξu

φ φy
)

+ (vψψx + vφφx)
(
ξv
ψψx + ξv

φφx
) + (vψψy + vφφy)

(
ξv
ψψy + ξv

φφy
)]

dx dy

=
∫

Ä

[
uψ

(
ψ2

x + ψ2
y

)
ξu
ψ + uφ(ψxφx + ψyφy)ξ

u
ψ + uψ(ψxφx + ψyφy)ξ

u
φ

+ uφ

(
φ2

x + φ2
y

)
ξu
φ + vψ

(
ψ2

x + ψ2
y

)
ξv
ψ + vφ(ψxφx + ψyφy)ξ

v
ψ

+ vφ(ψxφx + ψyφy)ξ
v
ψ + vφ

(
φ2

x + φ2
y

)
ξv
φ

]
dx dy

=
∫

Ä′

[
λuψξu

ψ + λ−1uφξu
φ + λvψξv

ψ + λ−1vφξv
φ

]
dψ dφ, (28)

since

(ψxφx + ψyφy) = ∇φ · ∇ψ

= 0,

ψ2
x + ψ2

y = λψxφy − λψyφx

= λ[ J−2(yφxψ − xφ yψ)]

= λJ−1,

and

φ2
x + φ2

y = −λ−1φxψy + λ−1φyψx

= −λ−1[ J−2(yψ xφ − xψ yφ)]

= λ−1J−1.

The second pair of velocity terms in (26) is∫
Ä

u j,i ξ
w
i, j dx dy

=
∫

Ä

uxξ
u
x + vxξ

u
y + uyξ

v
x + vyξ

v
y dx dy

=
∫

Ä

[
(uψψx + uφφx)

(
ξu
ψψx + ξu

φ φx
) + (vψψx + vφφx)

(
ξu
ψψy + ξu

φ φy
)

+ (uψψy + uφφy)
(
ξv
ψψx + ξv

φφx
) + (vψψy + vφφy)

(
ξv
ψψy + ξv

φφy
)]

dx dy. (29)

The coefficients of the test function derivatives are computed using REDUCE.
Along the free surface

τi j n j = κ

(
1

MC
− T

)
n − (t · ∇T)t,
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hence the boundary integral in (26) is

−
∫

0F

ξw
i

[
κ

(
1

MC
− T

)
ni − (t · ∇T)ti

]
ds,

since the velocity test function is zero along0L , 0R, and0B where Dirichlet conditions are
imposed. Using

κni = dti
ds

, t = 1√
x2

ψ + y2
ψ

(
xψ

yψ

)
, ds =

√
x2

ψ + y2
ψ dψ

along0F , integrating by parts, and using the fact that the velocity test functions are zero at
the left-hand and right-hand (LH and RH) ends of the free surface, we have

−
∫

0F

ξw
i

[(
1

MC
− T

)
dti
ds

− (t · ∇T)ti

]
ds,

= −
[
ξw

i

(
1

MC
− T

)
ti

]RH

LH

+
∫

0F

[
ti

d

ds

(
ξw

i

(
1

MC
− T

))
− ξw

i

dT

ds
ti

]
ds,

=
∫

0F

ti

(
1

MC
− T

)
dξw

i

ds
ds,

=
∫

φ=1

(
1

MC
− T

)(
xψξu

ψ + yψξv
ψ

) 1√
x2

ψ + y2
ψ

dψ. (30)

(Notice that the second term from the differentiationd
ds(ξi (

1
MC −T)) cancels the termξi

dT
ds ti

leading to the puzzling simplification.)
Finally, the weak form of the energy equation is∫

Ä

ξT

(
M

DT

Dt
− ∇2T

)
dx dy= 0,

whereξT (x(ψ, φ), y(ψ, φ)) is a suitable test function. The convection term is∫
Ä

ξT

(
M

DT

Dt

)
dx dy

=
∫

Ä

ξT M

(
∂T

∂t
+ u · ∇T

)
dx dy

=
∫

Ä

ξT M

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
dx dy

=
∫

Ä

ξT M

[
∂T

∂t
+ u(Tψψx + Tφφx) + v(Tψψy + Tφφy)

]
dx dy

=
∫

Ä

ξT M

[
∂T

∂t
+ u(Tψ yφ − Tφ yψ)J−1 + v(Tψ xφ − Tφxψ)J−1

]
dx dy

=
∫

Ä′
M

[
J

∂T

∂t
+ u(Tψ yφ − Tφ yψ) + v(Tψ xφ − Tφxψ)

]
ξT dψ dφ. (31)
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The diffusive term is

−
∫

Ä

ξT (∇ · ∇T) dx dy= −
∫

0

ξT [n · ∇T ] ds+
∫

Ä

[∇ξT · ∇T ] dx dy. (32)

The integral overÄ in (32) is∫
Ä

[
∂T

∂x

∂ξT

∂x
+ ∂T

∂y

∂ξT

∂y

]
dx dy

=
∫

Ä

[
(Tψψx + Tφφx)

(
ξT
ψ ψx + ξT

φ φx
) + (Tψψy + Tφφy)

(
ξT
ψ ψy + ξT

φ φy
)]

dx dy

=
∫

Ä

[(Tψψx + Tφφx)ψx + (Tψψy + Tφφy)ψy]ξT
ψ

+ [(Tψψx + Tφφx)φx + (Tψψy + Tφφy)φy]ξT
φ dx dy

=
∫

Ä

[
(Tψ

(
ψ2

x + ψ2
y

) + Tφ(φxψx + φyψy)
]
ξT
ψ

+ [
Tψ(ψxφx + ψyφy) + Tφ

(
φ2

x + φ2
y

)]
ξT
φ dx dy

=
∫

Ä′

[
(λTψ)ξT

ψ + (λ−1Tφ)ξT
φ

]
dψ dφ. (33)

The boundary integral in (32) is zero along0L and0R wheren · ∇T = 0 and along0B

where the temperature is imposed as a Dirichlet condition, hence the integral reduces to

−
∫

0F

ξT (n · ∇T) ds =
∫

0F

ξT (LT) ds

=
∫

φ=1

(
LT

√
x2

ψ + y2
ψ

)
ξT dψ. (34)
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